Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 26th 2014

    We started a reading group on the HoTT book here at Kent. One question came up which I’m not sure how to answer.

    Say you have two algorithms, e.g., for finding the gcd of two natural numbers. one of which is efficient and one slow. Since they give the same results for each pair, we say they are equal. So the upshot is that issues to do with algorithm complexity, etc., can’t be represented in UF?

    • CommentRowNumber2.
    • CommentAuthorZhen Lin
    • CommentTimeJun 26th 2014

    Yes: function extensionality erases those distinctions, at least with regards to propositional equality.

    • CommentRowNumber3.
    • CommentAuthorTobias Fritz
    • CommentTimeJun 26th 2014

    There’s been a closely related question on MO with a great answer by Andrej Bauer.

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeJun 26th 2014

    Complexity isn’t represented in the sense that the two algorithms compute the same function, which is of course the same as the case in the rest of mathematics.