Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory lie lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeJan 14th 2010

    I'm in the process of reworking pure set to incorporate those of AN's points that were valid and remove as many of the query-boxes as possible, in order to make it readable.

    Right now, the page describes trees, and then extensional graphs, and then briefly mentions the more general notion of which these are specializations. I would find it more intuitive, and more concise, to first describe the general notion, and then introduce trees and extensionality as two ways of ensuring that equivalent graphs (in the loose "bisimulation" sense appropriate for the general notion) are in fact isomorphic. Unless someone objects, I'll probably reorganize it that way.

    • CommentRowNumber2.
    • CommentAuthorTobyBartels
    • CommentTimeJan 14th 2010

    While watching your work in progress (an hour ago when you wrote this), I had the same thought about the organisation.

    • CommentRowNumber3.
    • CommentAuthorTobyBartels
    • CommentTimeJan 15th 2010
    • (edited Jan 15th 2010)

    There is a bit of a mismatch between what we get with the formalisation in material vs structural set theories. One point about the formalisation in structural set theory is that it works also in material set theory; of course, this is just because every material set theory defines a structural set theory. (More than that, the formalisation works precisely as written, that is in the same informal language; of course, this is because the interpretation of structural set theory in material set theory uses the same language, just a smaller portion of it.) The reason that this is important is that we can define a notion of possibly ill-founded pure set even if our material set theory includes an axiom of foundation.

    In fact, this is what Aczel does, as you can see when he proves theorems about the correspondence between sets and well-founded APGs; he is working in a well-founded material set theory. So while I like the new section on the formalisation of pure sets within material set theory, as far as it goes, I don't like saying that the other section is about formalisation within structural set theory. The formalisation there is also important even if one is using a material set theory.

    I'm not writing anything now, because the page is locked, but I may rearrange things further in light of this.

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeJan 15th 2010

    Fair enough. I guess it would be more appropriate to talk about just two ways of interpreting "pure set," either with "pure" as an adjective (which only makes sense materially), or with "pure set" as a noun (which makes sense structurally, and hence also materially).

    I wonder whether it is really a good idea to use "pure set" with the second meaning. I mean, really what we're talking about are structures which model or imitate the (adjectival) notion of a pure set in material set theory, right?

    • CommentRowNumber5.
    • CommentAuthorMike Shulman
    • CommentTimeJan 15th 2010

    I finished the reorganization of pure set that I had in mind. We should continue the terminological discussion.

    • CommentRowNumber6.
    • CommentAuthorTobyBartels
    • CommentTimeJan 15th 2010

    The term ‘pure’ in the second sense can still an adjective, just an adjective denoting structure instead of property, such as ‘monoidal’ in ‘monoidal category’. However, the set which is given the structure (the set of nodes in the graph) is not really the set that we are talking about; for finite sets, at least, it does not even have the correct cardinality. So after all that, I agree, the second meaning should take ‘pure set’ as an unanalysable noun in its own right.

    I think that the reason that I used the name pure set for this article was something like this: There is an intuitive conception of what a set is in material set theory, and this is something which needs to be modelled by mathematics; in particular, it needs to be modelled by structural mathematics if that is to encompass all of mathematics. In its simplest form (without atoms), this concept is known to set theorists as a ‘pure set’. So that is the concept at hand; the article discusses how to model those in (structural) mathematics. I use it because it is the term of art in (material) set theory, at least the term used when ‘set’ simple is not being used (and that term is not available to us for this purpose).

    Maybe I'll write a little introductory bit along those lines.

    • CommentRowNumber7.
    • CommentAuthorMike Shulman
    • CommentTimeJan 16th 2010

    Sounds good to me.

    • CommentRowNumber8.
    • CommentAuthorTobyBartels
    • CommentTimeJan 16th 2010

    I added a section on Motivation. I'm still unsure about the section Formalisation in material set theory, as well as the discussion of material set theory in Idea. I suppose that this stuff is unarguably correct if we wish to define ‘pure set’ in a material set theory (especially one which allows atoms), but it still seems to me beside the point (and rather trivial).

    Perhaps we should move the page to material set; it's really about how to formalise material sets within a structural set theory, and we restrict to the pure ones for the sake of simplicity. (Although ‘pure material set’ is redundant, since there is no structural notion of a pure set as a set with the property or structure of purity, as you remarked earlier.)

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)