Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
I wanted to add some references on WKB approximation, but found that we have two entries semiclassical approximation and WKB method. WKB or semiclassical expansion is one and the same thing: asymptotic expansion of quantum mechanical amplitudes in Planck constant. On the other hand, “WKB method” is often used to limit considerations just to the stationary phase approximation way of doing the expansion, rather than say to the path integral equivalent (the latter anyway used mainly in physics treatments of semiclassical expansion only).
One can “historically” limit to just one dimension and just to asymptotics of integral expressions in first order, so in some sense one can limit to some particular case as WKB approximation, but for a modern researcher, WKB and semiclassical method is one and the same thing. I can hardly split the discussion and references to the two entries, so I would rather have them merged into one entry and restrict any mention of the difference in scope to a historical subsection. What do you think about it (Urs, especially). (In fact it makes some sense to rename WKB method entry into 1-dimensional WKB method and to discuss just the old early theory there).
At semiclassical approximation, I added references on so called exact WKB method, very popular recently, stemming from Voros 1983, where one looks at WKB expansion to all orders and understands it in the sense of Borel summability.
A. Voros, The return of the quartic oscillator. The complex WKB method, Annales de l’institut Henri Poincaré A39:3, 211-338 (1983) euclid
Alexander Getmanenko, Dmitry Tamarkin, Microlocal properties of sheaves and complex WKB, arxiv/1111.6325
Kohei Iwaki, Tomoki Nakanishi, Exact WKB analysis and cluster algebras, J. Phys. A 47 (2014) 474009 arxiv/1401.7094; Exact WKB analysis and cluster algebras II: simple poles, orbifold points, and generalized cluster algebras, arXiv:1409.4641
In order to record the reference by Banerjee that the Hellman-Feynman theorem in quantum mechanics holds for the first order WKB wave functions, I created the page Hellman-Feynman theorem.
I seem to remember that we had discussion of this terminological issue before. Since it’s about terminology, choose the convention you like best and be sure to add a remark about other possible conventions.
1 to 3 of 3