Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeNov 2nd 2015

    added at TC some references on computing THH for cases like koko and tmftmf, here

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeNov 6th 2015

    have been editing a bit more at topological cyclic homology, expanded the Idea-section a bit more, added and reorganized references, added some more cross-links.

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 22nd 2017

    I included the recent reference

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeJul 22nd 2017

    Thanks. We should also link to this from Frobenius morphism. They sort of give the concept a deeper home in stable homotopy theory.

    • CommentRowNumber5.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 23rd 2017
    • (edited Jul 23rd 2017)

    Right. I saw you mentioned Frobenius morphisms on g+. You consider that the main advance of the paper, or one of them? That’s presumably what’s described as

    We start in Section IV.1 by defining a certain Frobenius-type map RR tC pR \to R^{t C_p} defined on any 𝔼 \mathbb{E}_{\infty}-ring spectrum RR, which in the case of classical rings recovers the usual Frobenius on π 0\pi_0, and the Steenrod operations on higher homotopy groups.

    So how are we to understand their claim of “using only homotopy-invariant notions”? If this is a more synthetic approach, can it be captured by some HoTT approach? It’s true there’s plenty about homotopy orbits and fixed points, so dependent sums and products, but I wonder how quickly we need something more specific. E.g., is that norm map Nm G:X hGX hGNm_G : X_{h G} \to X^{h G} only available for finite groups acting on spectra?

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 23rd 2017

    As for that last point, Definition I.1.10 spells out broader conditions.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJul 23rd 2017
    • (edited Jul 23rd 2017)

    I saw you mentioned Frobenius morphisms on g+. You consider that the main advance of the paper, or one of them?

    The main theorems of the article improve on ideas that had been known to some extent before. The statement about the Frobenius morphism struck me as a remarkable new insight, connecting number theory with stable homotopy theory. According to Thomas, Peter said about this that he wouldn’t have thought that there was still something new for him to learn about Frobenius.

    I am glad that the article is finally out, so that I can read up on the details (having heard various talks and explanations before). I do suspect this is closely related to the brane bouquet story, since after all there double dimensional reduction is found to be implemented by passing to cyclic cohomology, and topological cyclic (co-)homology is just the proper \infty-version of that. Also the way that cyclotomic spectra encode S 1S^1-equivariant structure in terms of fixed points of underlying /pS 1\mathbb{Z}/p\mathbb{Z} \subset S^1-actions is possibly related to the A-type ADE singularities in this business, which involve exactly this: /p\mathbb{Z}/\mathbb{Z}p-actions inside S 1S^1 on the S 1S^1-circle fibers of the M-theory fibration. Presently I don’t see further than this coincidence, but I suspect there is more to it.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJul 23rd 2017

    I have been adding pointers to relevant parts of Nikolaus-Scholze 17 to Tate spectrum, cyclotomic spectrum, topological cyclic homology, norm map, created a minimum at Farrell-Tate cohomology and added the plain definition for E E_\infty-rings to Frobenius morphism (here)

    Not done yet, but need to quit for tonight.

    • CommentRowNumber9.
    • CommentAuthorDavid_Corfield
    • CommentTimeJul 24th 2017

    I added a little more at Farrell-Tate cohomology, including the extra condition on Farrell’s generalisation

    What is called Farrell-Tate cohomology is a generalization of this construction to possibly infinite discrete groups GG of finite virtual cohomological dimension.

    We have cohomological dimension, so I’ve tried to find out about the virtual variety. I found a couple of attempts to define this, now at virtual cohomological dimension. Not sure how to piece them together.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)