Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality education elliptic-cohomology enriched fibration foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory kan lie lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monad monoidal monoidal-category-theory morphism motives motivic-cohomology nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 25th 2016

    Added a bit to Hartogs number. Including the curiosity that GCH implies AC. :-)

    • CommentRowNumber2.
    • CommentAuthorMike Shulman
    • CommentTimeJan 26th 2016

    How are you phrasing the GCH in the absence of AC to make that true? I usually see GCH phrased as something lke 2 n= n+12^{\aleph_n} = \aleph_{n+1}, and in the absence of AC usually the \alephs are only the well-orderable cardinalities; so that doesn’t seem sufficient for your argument which applies GCH to P(P(P(X)))P(P(P(X))) when XX is not known to be well-orderable. Unless I’m missing something?

    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 26th 2016
    • (edited Jan 26th 2016)

    Can’t we say X,Y¬(|X|<|Y|<|PX|)\forall_{X, Y} \neg (|X| \lt |Y| \lt |P X|)? Which is probably more or less what Cantor would have said.

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeJan 26th 2016

    How do you get from that to (X)\aleph(X) being bijective to P(X)P(X), P 2(X)P^2(X), or P 3(X)P^3(X)?

    • CommentRowNumber5.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 26th 2016

    Hm, maybe I unwittingly let trichotomy sneak into my thinking. (The result ZF + GCH implies AC happens to be true, but maybe this route through Hartogs is not really the way to do it.) Let me think on it more (and thanks).

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 26th 2016
    • (edited Jan 26th 2016)

    Well, here is a more responsible demonstration, which does in fact use the Hartogs numbers. The key result seems to be lemma 3 (page 552).

    • CommentRowNumber7.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 26th 2016
    • (edited Jan 26th 2016)

    Okay, I’ve written up what I think is a tight proof of GCH implies AC at Hartogs number. It’s a rendition of the Gillman article cited in my last comment (I did spot a little oversight in his proof).

    I learned of this fact last night while I was idly leafing through Eric Wofsey’s old blog Ultrawaffle (or whatever he calls it); it’s one of his series “Fun Little Math Problem of the Day”; see here. I think the “little” made me underestimate the amount of argumentation that is actually required, but the proof does wind up being fun (and the statement a little surprising at first, as Gillman says: what could GCH possibly have to do with AC?).

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeJan 27th 2016

    Nice, thanks!

    Maybe it’s too late at night, but I need help with the easy exercise that |P|=|2P|{|P|} = {|2P|} if PP is an infinite power set. I can see how to do it if P=P(Y)P=P(Y) where YY is Dedekind-infinite, but in the general case I’m stuck.

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeJan 27th 2016

    I do feel like the “recall the GCH” comment merits some more discussion, since it appears to be only this particular way of phrasing GCH that implies AC, right? If we state GCH as 2 n= n+12^{\aleph_n} = \aleph_{n+1}, which is equivalent in the presence of AC (and is how the article continuum hypothesis states it), then it doesn’t imply AC.

    • CommentRowNumber10.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 27th 2016

    I can see how to do it if P=P(Y)P=P(Y) where YY is Dedekind-infinite, but in the general case I’m stuck.

    Oh! I may have elided over this point.

    So in ZF with classical logic, there is a distinction between infinite and Dedekind-infinite? I just assumed that in that context, XX infinite is the same as existence of a bijection 1+XX1+X \cong X, which is what I had in mind.

    • CommentRowNumber11.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 27th 2016

    As for #9: I don’t know the history, but maybe someone should check on Sierpinski’s article. You again raise an interesting point.

    • CommentRowNumber12.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 27th 2016

    Okay, I just consulted Wikipedia, and yes you’re right that Dedekind-infinite and infinite are distinct in ZF in classical logic. (Live and learn.) However, the patch is easy: just embed YY into a Dedekind-infinite set like +Y\mathbb{N} + Y, and take the power set XX of that. The proof then goes through. I’ll put the patch in now.

    • CommentRowNumber13.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 27th 2016

    And finally (Mike), I added some remarks to continuum hypothesis to cover the point you brought up in #9. Sierpinski of course uses the stronger form of GCH.

    • CommentRowNumber14.
    • CommentAuthorMike Shulman
    • CommentTimeJan 27th 2016

    Thanks!! Dedekind-infiniteness is definitely an unexpected gotcha: you expect that constructive mathematics may have trouble defining “infinite”, but it’s surprising (to me) that even in ZF there’s some ambiguity left in what you mean by “infinite”.

    Morally, I feel like 2 n= n+12^{\aleph_n}=\aleph_{n+1} and XY(|X||Y||P(X)||Y|=|X||Y|=|P(X)|\forall X \forall Y ({|X|}\le {|Y|}\le {|P(X)|} \to {|Y|}={|X|}\vee {|Y|}={|P(X)|} ought to have two different names, like “weak GCH” and “strong GCH”. Then the theorem would be that strong GCH is equivalent to the conjunction of weak GCH and AC.

    • CommentRowNumber15.
    • CommentAuthorDavidRoberts
    • CommentTimeJan 27th 2016

    The latter should be ’global CH’, since it applies to all sets, and the traditional ’G(eneralised )CH’ can be saved for the version with only alephs.

    • CommentRowNumber16.
    • CommentAuthorDavidRoberts
    • CommentTimeJan 27th 2016

    Also: is the full strength of ZF even used? The argument looks like it could be done in BZ.

    • CommentRowNumber17.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 27th 2016
    • (edited Jan 28th 2016)

    As for the nomenclature, I have no strong opinions. I’m fine with implementing the proposed theorem in #14 if agreement is reached.

    I’m pretty sure BZ suffices. Each subset of XX equipped with a well-ordering is uniquely specified by its set of principal ideals or downsets, i.e., an element of PP(X)P P(X). An equivalence class of well-orderings is then a subset of PP(X)P P(X) or an element of PPP(X)P P P(X), so the set of equivalence classes (X)\aleph(X) is a subset of PPP(X)P P P(X) as advertised. There is no funny business with unbounded quantifiers or replacement that I can see anywhere; everything is locally definable. This is probably worth a remark at Hartogs number.

    • CommentRowNumber18.
    • CommentAuthorMike Shulman
    • CommentTimeJan 31st 2016

    “global” to me implies that the other one would be “local” in some way, which doesn’t seem to be the case.

    • CommentRowNumber19.
    • CommentAuthorDavidRoberts
    • CommentTimeJan 31st 2016

    Localised to alephs? Of course, ’local’ has a fairly established meaning in set theory as well, which is better suited to specific instances of CH at a given set/cardinal.

    • CommentRowNumber20.
    • CommentAuthorTodd_Trimble
    • CommentTimeMar 21st 2016

    I added a few more examples (equivalent forms of AC) to Hartogs number, to illustrate the kinds of things you can do with it.

    • CommentRowNumber21.
    • CommentAuthorTodd_Trimble
    • CommentTime7 days ago

    Added the proof that the Hartogs of SS doesn’t inject into SS.

    diff, v19, current