Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMar 16th 2016
    • (edited Mar 16th 2016)

    I gave commutative Hopf algebroid its own entry. (There used to be allusions to this concept at Hopf algbroid and at Hopf algebroid over a commutative base).

    Besides the definition, I added discussion of the commutative Hopf algebroids arising as generalized dual Steenrod algebras, copied over from the coresponding section at Adams spectral sequence.

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeMar 17th 2016
    • (edited Mar 17th 2016)

    Nice.

    In comparison to the Hopf algebroids over possibly noncommutative base it is a rather simple structure to define, but still extremely important in applications.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeMar 17th 2016

    I have started a section Homological algebra of Hopf comodules with statements and proof of all facts needed to identify the entries of the second page of the EE-Adams spectral sequence with Ext-groups of Hopf comodules.

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeMar 18th 2016
    • (edited Mar 18th 2016)

    I made a search through pdf of the Ravenel’s book and have not found the phrase “Hopf comodule”. Do you mean simply left comodule over a Hopf algebroid ? Is so, please say just so as for a Hopf algebraist Hopf module is a quite different thing: a module which is in the same time a comodule and the two have certain compatibility. Now, Hopf comodule would point toward some sort of dual version of that (what is the same, but we could also dualize algebroids to coalgebroids). In any case for a Hopf algebraist it is incorrect and very confusing to bring Hopf (co)modules if you just mean comodules (even if not over Hopf algebra but over a Hopf algebroid). Similarly there is a category of Hopf bimodules, rather standard thing in Hopfgebra. I may be wrong, in algebraic topology there may be such terminology as you suggested, but my search through Ravenel’s book did not give it and I am highly suspicious that you invented the term by improvization. Am I wrong ?

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMar 18th 2016

    Right, good point, I’ll change that.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeMay 13th 2016
    • (edited May 13th 2016)

    I have added (here) statement and proof of this here:

    If (Γ,A)(\Gamma,A) graded commutative Hopf algebra such that

    1. the underlying algebra is free graded commutative;

    2. η:AΓ\eta \colon A \to \Gamma is a flat morphism;

    3. Γ\Gamma is generated by primitive elements {x i} iI\{x_i\}_{i\in I}

    then the Ext of Γ\Gamma-comodules from AA and itself is

    Ext Γ(A,A)A[{x i} iI]. Ext_\Gamma(A,A) \simeq A[\{x_i\}_{i \in I}] \,.
    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJul 12th 2016

    For completeness I have spelled out the proof that constructing co-free comodules is right adjoint to the forgetful functor here.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2016
    • (edited Jul 19th 2016)

    I think there was one axiom missing in the explicit description of commutative Hopf algebroids (this def.). I was following def. A1.1.1 in Ravenel 86, and there this axiom is missing, too.

    Namely we need to demand that

    Ψη R=(id Aη R)η R\Psi \circ \eta_R = (id \otimes_A \eta_R) \circ \eta_R;

    and

    Ψη L=(η L Aid)η L\Psi \circ \eta_L = (\eta_L \otimes_A id) \circ \eta_L

    This is the dual of the condition that composition of morphisms in a groupoid respects source and target.

    Notably, it is precisely these two conditions which also imply that the ground ring AA of the commutative Hopf algebroid Γ\Gamma is canonically a left and right Γ\Gamma-comodule. This is used extensively in Ravenel 86 (e.g. def. A1.2.11 and corollary A1.2.12) but is never stated.

    But please anyone let me know if I am missing something.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2016

    Ah, Ravenel of course does say that the coproduct is an AA-bimodule homomorphism, which comes down to the same. Okay, then there was only an axiom missing in the nnLab entry. Fixed now.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2016
    • (edited Jul 19th 2016)

    In def. A1.2.11 of “the” cobar complex in Ravenel 86, doesn’t that need the assumption that Γ\Gamma is actually a Hopf algebra over AA, instead of a Hopf algebroid, hence that left and right units coincide? Because otherwise the “unit coideal” Γ¯\overline{\Gamma} (defined either as the cokernel of the left of the right unit) is not both a left and a right AA-module at the same time, unless I am missing something.

    (The analogous statement in prop. 5.2.1 in Kochman 96 is indeed made just for coalgebras.)