Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMar 31st 2016
    • (edited Mar 31st 2016)

    I have been polishing and expanding the entry weak factorization system:

    • gave it an Idea-section;

    • gave the definitions numbered environments and full details;

    • spelled out the proof of the closure properties in full detail.

    Regarding notation: I decided to use as generic name for a weak factorization system:

    • not (L,R)(L,R), as used to be used in the entry (for that’s already my preferred generic choice for pairs of adjoint functors on the nnLab, and for discussion of Quillen adjunctions the notation conventions would clash);

    • not (E,M)(E,M) or the like, since that gives no hint as to what is meant (running into an “EE” in the middle of some discussion, the reader is always at risk of having to browse back to figure out which class is meant);

    • but… (Proj,Inj)(Proj, Inj), for that is nicely indicating what is meant.

    • CommentRowNumber2.
    • CommentAuthorTodd_Trimble
    • CommentTimeMar 31st 2016

    Does anyone else use that terminology/notation?

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeMar 31st 2016

    Given a single class KK of morphisms, it’s standard to write KProjK Proj and KInjK Inj for the corresponding left and right lifting classes. Accordingly, it’s standard to say things like “(K,KInj)(K,K Inj) happens to be a weak factorization system” or (KProj,K)(K Proj,K ) happens to be a weak factorization system”.

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeMar 31st 2016

    I much prefer (L,R)(L,R). I generally use FGF\dashv G for a generic pair of adjoint functors, but maybe you could do (,)(\mathcal{L},\mathcal{R}) to disambiguate?

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMar 31st 2016
    • (edited Mar 31st 2016)

    Let’s maybe wait with changing notation back until edits stabilize.

    Because, for instance that statement about the closure property is all about the lifting axioms and independent of the factorization, so its proof might better be copied over to the entry on lifting problems. There notation such as (.)(\mathcal{L}.\mathcal{R}) wouldn’t work, while InjInj and ProjProj would be preferred there.

    • CommentRowNumber6.
    • CommentAuthorMike Shulman
    • CommentTimeMar 31st 2016

    In my opinion, notation such as InjInj and ProjProj would never be preferred.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeMar 31st 2016

    Why?

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeMar 31st 2016

    For one thing, I think it’s general mathematical practice that variables have single-character names. Multi-character identifiers are becoming more common than they used to be, but in all cases I can think of they are used to denote specific, defined objects rather than variables being quantified over. We talk about “the category SetSet” but we say “for any category CC”. I think violating a convention like this would be very confusing.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeApr 1st 2016

    My experience is the opposite, frequently when looking up things in a longer text I need to waste time with browsing to figure out what the authors means by their letters. Notation that comes with indication of its meaning is less confusing and more efficient for communication. And specifically things like “fib, cof, proj, inj” are standard.

    But let’s leave it at that. I have replaced the (Proj,Inj)(Proj,Inj) in the entry now with (,)(\mathcal{L},\mathcal{R}).

    • CommentRowNumber10.
    • CommentAuthorMike Shulman
    • CommentTimeApr 1st 2016

    fib, cof, proj, inj are standard as operations that are specific and defined, and that are applied to variables, e.g. cof(I)cof(I) or inj(J)inj(J).

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeApr 1st 2016
    • (edited Apr 1st 2016)

    not sure why we really need to debate this. I find myself now interrupting doing useful work and instead collecting references just to argue about notation; I shouldn’t do that. But before I could stop myself, the first hit was this here: pdf.

    But let’s really leave it at that. I have changed the notation on the nLab to your preference, so all is good.

    • CommentRowNumber12.
    • CommentAuthoranuyts
    • CommentTimeFeb 14th 2023

    Cite introductory texts.

    diff, v44, current

    • CommentRowNumber13.
    • CommentAuthoranuyts
    • CommentTimeFeb 20th 2023

    Cite Introduction to Homotopy Theory

    diff, v45, current