Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorThomas Holder
    • CommentTimeJan 4th 2017

    I’ve started sufficiently cohesive topos. Here are a couple of remarks and questions:

    1. The corresponding terminology in def. 2.13 at cohesive topos strikes me as odd: p !(Ω)=1p_!(\Omega)=1 is connectedness not contractability.

    2. It isn’t quite clear to me yet at which level of generality to optimally state the definition of ’sufficient cohesion’. It seems that what one wants to get here are the minimal assumptions ensuring that the connectedness of Ω\Omega is equivalent to its contractibility and this presumably requires only preservation of finite products by p !p_! and not the Nullstellensatz (nor even the existence of p !p^! !?).

    3. Since the entry so far lives on the (0,1)Lab maybe somebody here has an idea what to say for the (\infty,1)-case e.g. assuming connectedness of the (higher) object classifier !?

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeJan 4th 2017

    is connectedness not contractability

    Fixed.

    (Sometimes it takes less keystrokes to fix a typo than to annonce it. :-)

    • CommentRowNumber3.
    • CommentAuthorMike Shulman
    • CommentTimeJan 5th 2017

    Can we find a different word than “contractible” for the concept p !(X Y)=1p_!(X^Y)=1 used in “sufficient cohesion”? In the context of higher toposes, “contractible” would naturally be the word for p !(X)=1p_!(X)=1, since there p !(X)p_!(X) is the fundamental \infty-groupoid rather than just the set of connected components. (I think this case is probably what Def 2.13 at cohesive topos had in mind.) I am not sure why Lawvere said “contractible” for p !(X Y)=1p_!(X^Y)=1 in the first place; what about something more descriptive like “exponentially connected”?

    (Actually, in the higher-topos/HoTT case one wants to qualify this “contractibility” with an adjective like “cohesively contractible” anyway, since there is also the internal notion of “homotopically contractible”, meaning equivalent to 11, and likewise “homotopically connected”, meaning X 0=1\Vert X\Vert_0 = 1.)

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeJan 5th 2017

    (Note that the syntax for “Remark” is num_remark, not num_rem. I’ve fixed it.)

    • CommentRowNumber5.
    • CommentAuthorMike Shulman
    • CommentTimeJan 5th 2017

    Regarding the level of generality and the \infty-case, it’s hard for me to have an opinion without having a motivation for “sufficient cohesion”. What is the purpose of this property? What exactly is it “sufficient” for?

    (One remark about the \infty-case is that I believe the proof of Corollary 6.5 in Lawvere and Menni works fine there, so that “pieces have points” plus “contractible codiscreteness” implies “sufficient cohesion”. I did a little internal investigation of these axioms in section 10 of BFP in CoHoTT.)

    • CommentRowNumber6.
    • CommentAuthorThomas Holder
    • CommentTimeJan 5th 2017
    • (edited Jan 5th 2017)

    The main motivation for ’contractible’ seems be to that after passage to “homotopy” HoHo\mathcal{E} i.e. replacing Hom(Y,X)Hom(Y,X) by p !(X Y)p_!(X^Y) contractibles become precisely the terminal objects. So from a 1-categorical perspective the choice appears suggestive and innocuous to me. Within an n-categorical perspective ’exponentially connected’ would sound fine to me.

    Instead of ’sufficient cohesion’ which suggests a weak form of cohesion though the concept is actually a strong form I would be inclined to use something like ’having enough connected objects’ or ’having connected power objects’.

    I basically stuck to Lawvere’s terminology because the readers of the nLab are expected to come from reading Lawvere’s or Menni’s papers that use the terminology and I think it unwise and impolite to improve on their terminology unless one can also improve on their results. So for the moment I think that one should keep the terminology and probably use the entry’s section on ’terminology’ to make suggestions for alternatives.

    Within Lawvere’s story, the concept affords to sort out “degenerate” cohesion where pieces have exactly one point. Intuitively, in a sufficiently cohesive topos ’true’ and ’false’ are not only connected but can be deformed into each other i.e. there is another kind of unity of (logical) opposites here. From a different angle, in such toposes Ω\Omega provides a generalized (nonlinear) interval object which exponentiates connectedly.

    [Thanks for catching the bug!]

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJan 5th 2017
    • (edited Jan 5th 2017)

    passage to “homotopy” HoHo\mathcal{E} i.e. replacing Hom(Y,X)Hom(Y,X) by p !(X Y)p_!(X^Y)

    This has been stated as a motivation for cohesive 1-toposes since “Axiomatic cohesion”. But it is an open problem how to get the correct homotopy category via this approach. The correct homotopy category is the one given by the above replacement plus the restriction to cofibrant-fibrant objects (in the motivating example of the cohesive 1-topos of simplicial sets at least). Has there been any progress on fixing this?

    • CommentRowNumber8.
    • CommentAuthorThomas Holder
    • CommentTimeJan 5th 2017

    I think for now the last word on this is the paper by Marmolejo-Menni from a year ago. They work out the details of the passage though they probably leave open the question how this relates to proper homotopy.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJan 5th 2017

    There is a certain tension between requiring a category to be a topos, and requiring the result of quotienting hom-sets by homotopy to be the localization at a class of weak equivalences. I wonder what the rough plan is by which this is supposed to be made to work.

    • CommentRowNumber10.
    • CommentAuthorMike Shulman
    • CommentTimeJan 5th 2017

    Ah, I see! Let me rephrase that in ∞-language. Given a cohesive ∞-topos p:ESp:E\to S, we can define a “homotopy 1-category” hEh E with the same objects as EE and homs hE(X,Y)=p !(Y X) 0h E(X,Y) = \| p_! (Y^X) \|_0, the “connected components of the shape of the homs in EE”. What Lawvere calls “contractible” means being terminal in hEh E. There is a functor hES 0h E \to \|S\|_0 defined by p !p_!, and since p !p_! preserves the terminal object, Lawvere’s “contractibility” implies that p !Xp_! X is also contractible (i.e. terminal in SS). The difference is, as Urs says, that Lawvere’s notion is a “strong contractibility” (equivalent to 1 by an actual homotopy equivalence) whereas contractibility of p !Xp_! X is instead about the “weak homotopy type”.

    So maybe “contractibility” isn’t so bad, although I’d still prefer to add some adjectives like “strongly cohesively contractible”, at least when the notion is first defined on the page.

    I’m not sure why you think “readers of the nLab are expected to come from reading Lawvere’s or Menni’s papers that use the terminology” — I think it at least as likely that a reader of the nLab would encounter the notion on the nLab first and then be pointed to Lawvere and Menni’s papers. And I have no qualms about improving on bad terminology. However, as above, now I see that “contractible” isn’t all that bad, and “sufficiently cohesive” isn’t exactly bad so much as unevocative.

    • CommentRowNumber11.
    • CommentAuthorMike Shulman
    • CommentTimeJan 5th 2017

    (Plus we should explain somewhere why this is a notion of “contractibility”.)

    • CommentRowNumber12.
    • CommentAuthorMike Shulman
    • CommentTimeJan 5th 2017

    In general, I’m suspicious of axioms whose only purpose seems to be to rule out models that “aren’t what you had in mind”. If none of your theorems require such an axiom, why bother with it? Your “pathological example” may turn out to be someone else’s “intended example”.

    • CommentRowNumber13.
    • CommentAuthorThomas Holder
    • CommentTimeJan 6th 2017

    @#10. Lacking reader polls, I extrapolate my own usage of the nLab as well as what I think is compatible with online statements on MO etc.

    @#12. ’sort out’ is probably misleading, what Lawvere does is more charting a territory where the inscribed conceptual borders lead to a better understanding of the examples and concepts on both sides. The things ’sorted out’ are just put in another place.

    • CommentRowNumber14.
    • CommentAuthorThomas Holder
    • CommentTimeJun 2nd 2018

    I finally finished the proof of prop.5.7 at sufficiently cohesive topos by replacing the previous non-converging external argument with internal hand waving. Albeit a bit sketchy I am inclined to call it a day resp. a proof but if anybody has a more explicit argument I’d like to see it.

    I also added prop.4.5 hinging on the lemma 4.6. Hopefully, I had not noticed this before simply becuse it is false.

    diff, v38, current

    • CommentRowNumber15.
    • CommentAuthorThomas Holder
    • CommentTimeJun 10th 2018

    I added a remark that in Set Set^\rightrightarrows the subobject classifier is not only connected but even contractible.

    diff, v43, current

    • CommentRowNumber16.
    • CommentAuthorThomas Holder
    • CommentTimeJul 14th 2018

    I added a reference to one of the recent papers by Menni.

    diff, v46, current