Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeFeb 22nd 2017
    • (edited Feb 28th 2017)

    The stub entry model structure on simplicial Lie algebras used to point to model structure on simplicial algebras. But is it really a special case of the discussion there?

    Quillen 69 leaves the definition of the model structure to the reader. Is it with weak equivalences and fibrations those on the underlying simplicial sets? Is this a simplicially enriched model category?

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeFeb 22nd 2017

    Is this a simplicially enriched model category?

    Yes, that’s a special case of theorem I in Reedy’s thesis, from 1974. I have added this to the entry, here.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeFeb 22nd 2017

    I have made explicit (here) that taking normalized chains gives a Quillen adjunction

    (N *N):(LieAlg k Δ op) projNN *(dgLieAlg k) proj. (N^* \dashv N) \;\colon\; (LieAlg_k^{\Delta^{op}})_{proj} \underoverset {\underset{N}{\longrightarrow}} {\overset{N^*}{\longleftarrow}} {\bot} (dgLieAlg_k)_{proj} \,.
    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeFeb 28th 2017

    I keep claiming that Quillen claimed that there is a model structure on reduced rational simplicial Lie algebras whose weak equivalences and fibrations are those on the underlying simplicial sets.

    But Quillen’s classical text is very vague about this. In “Rational homotopy theory” (web) he just writes below the analogous theorem 4.7 for reduced simplicial commutative Hopf algebras:

    We leave to the reader to formulate a similar theorem for [[reduced simplicial Lie algebras ]].

    So I should check. But if anyone has a sanity check to offer, I’d be grateful.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)