Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limit limits linear linear-algebra locale localization logic mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topological topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavidRoberts
    • CommentTimeMar 28th 2017

    I was talking to an ex-Adelaide student now at Oxford about some technicalities they were trying to track down regarding locally ringed spaces. I checked locally ringed topological space, and found the Stacks Project reference was out of date. I replaced it with a link to the specific tag for the definition, at least.

  1. I added a reformulation of the locality condition which doesn’t refer to points.

    Out of curiosity, what technicalities did they want to track down?

    • CommentRowNumber3.
    • CommentAuthorDavidRoberts
    • CommentTimeMar 28th 2017

    Ingo,

    Something in EGA about fibred products of locally ringed spaces that referred to a proof in the first edition of Bourbaki’s Algèbre Chapter 8. I found that Martin B linked on MO to some (now missing) notes. They would be handy I’m sure.

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeMar 29th 2017

    Isn’t it an even better formulation to just say that it is a “local ring” in the internal language of the topos of sheaves?

    • CommentRowNumber5.
    • CommentAuthorDavidRoberts
    • CommentTimeMar 29th 2017

    Maybe. But this student may wish to do something different. We were really just tracking down a reference chain to see what the algebraic “meat” of the construction is.

    • CommentRowNumber6.
    • CommentAuthorDavidRoberts
    • CommentTimeMar 30th 2017

    That said, is the construction of products and pullbacks of locally ringed spaces, seen via the topos lens, easier? The hard nut at the core of this is that the pushout of local rings in the category of rings is not local anymore. One needs to reflect it back into the category of local rings. Even in the case of affine schemes one can’t get away from this, methinks.

    • CommentRowNumber7.
    • CommentAuthorMike Shulman
    • CommentTimeMar 30th 2017

    I’ve never thought about that question. But I would expect that it would be easier to construct the pushout of local rings in the internal language than to have to deal explicitly with stalks or sections. By “reflect” you don’t mean a literal category-theoretic reflection, do you? I didn’t think local rings were reflective in the category of arbitrary rings; for one thing they aren’t even a full subcategory, are they?

    • CommentRowNumber8.
    • CommentAuthorIngoBlechschmidt
    • CommentTimeMar 30th 2017
    • (edited Mar 30th 2017)

    Indeed, I’d prefer to just say “local ring” in the internal language.

    And indeed, constructing fiber products X× ZYX \times_Z Y in the category of locally ringed locales is quite nice using the internal language. First, you construct the fiber product in the category of ringed locales. This is done in the naive way – take the fiber product |X|× |Y||Z||X| \times_{|Y|} |Z| of the underlying locales, pull back the structure sheaves, and take their tensor product: 𝒜π X 1𝒪 X (...) 1𝒪 Zπ Y 1𝒪 Y\mathcal{A} \coloneqq \pi_X^{-1}\mathcal{O}_X \otimes_{(...)^{-1}\mathcal{O}_Z} \pi_Y^{-1}\mathcal{O}_Y. This ring will in general not be local [*].

    Then, to obtain the fiber product in the category of locally ringed locales, construct, from the internal point of view of Sh(|X|× |Y||Z|)Sh(|X| \times_{|Y|} |Z|), the spectrum of 𝒜\mathcal{A} (in a constructively sensible way, as a locale). Externally, this will result in a locale PP over |X|× |Y||Z||X| \times_{|Y|} |Z| which is equipped with a local sheaf of rings.

    However, we are not quite done yet: There are morphisms PXP \to X and PYP \to Y as required for a fiber product, but these are only morphisms of ringed locales, not of locally ringed locales. To fix this, we have to restrict to a certain sublocale of PP – the greatest sublocale PP' where PXP' \to X and PYP' \to Y are morphisms of locally ringed locales [**]. This sublocale, together with the ring 𝒜| P\mathcal{A}|_{P'}, is the desired fiber product.

    [*] Even in the easiest case – that all rings involved are fields – locality is not preserved: The rings \mathbb{R} and \mathbb{C} are local, and the homomorphism \mathbb{R} \to \mathbb{C} is local, but [X]/(X 2+1)[X]/(X 2+1)×\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}[X]/(X^2+1) \cong \mathbb{C}[X]/(X^2+1) \cong \mathbb{C} \times \mathbb{C} is not.

    [**] This sublocale can be explicitly described. Recall that P=Spec(𝒜)P = Spec(\mathcal{A}) is the classifying locale of the theory of filters in 𝒜\mathcal{A} (a filter is a constructively sensible substitute for the complement of a prime ideal). The sublocale PP' is the classifying locale of the theory of those filters FF in 𝒜\mathcal{A} which enjoy the following special property: If x1Fx \otimes 1 \in F, where x:π X 1𝒪 Xx : \pi_X^{-1}\mathcal{O}_X, then xx is invertible in π X 1𝒪 X\pi_X^{-1}\mathcal{O}_X; and similarly with 𝒪 Y\mathcal{O}_Y instead of 𝒪 X\mathcal{O}_X. It’s also possible to explicitly write down the frame of opens of this sublocale.

    • CommentRowNumber9.
    • CommentAuthorDavidRoberts
    • CommentTimeMar 30th 2017

    Thanks both. I asked early on in the discussion if spaces involved were sober, and it’s possible they are not, so I’m not sure using locales will.help.

    • CommentRowNumber10.
    • CommentAuthorIngoBlechschmidt
    • CommentTimeMar 30th 2017
    • (edited Mar 30th 2017)

    Mike: You are right that the non-full subcategory of local rings is not reflective in the category of arbitrary rings. [***]

    However, the situation is better if we allow for rings over arbitrary locales. The non-full subcategory of local rings over arbitrary locales is reflective in the category of arbitrary rings over arbitrary locales. The reflector maps a possibly non-local ring 𝒜\mathcal{A} over some locale XX to the structure sheaf of the spectrum of 𝒜\mathcal{A} (constructed inside Sh(X)Sh(X)).

    Note that, since the embedding is not full, the reflection of a ring which already happens to be local is not in general isomorphic to that ring.

    [***] One can show that a ring AA admits a universal homomorphism AAA \to A' to a local ring AA' if and only if AA contains exactly one prime ideal. In this case, the ring AA is already local and the universal localization is given by AA itself. (In constructive mathematics, one should probably rephrase “contains exactly one prime ideal” as “every element of AA is either nilpotent or invertible”.)

    • CommentRowNumber11.
    • CommentAuthorMike Shulman
    • CommentTimeMar 30th 2017

    Ingo: that is all very cool. You should record it somewhere on the nLab.

    • CommentRowNumber12.
    • CommentAuthorDavidRoberts
    • CommentTimeMar 30th 2017

    @Mike

    you don’t mean a literal category-theoretic reflection, do you?

    Sure, take that as an informal notion.

  2. Re 11: Sure, I’ll do that. I’m currently in the very last steps of finishing my PhD thesis and will then incorporate some topics of interest into the nLab.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)