Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 24th 2017

    I see there a preprint just out

    We present a generalization of cartesian closed categories (CCCs) for dependent types, called dependent cartesian closed categories (DCCCs), which also provides a reformulation of categories with families (CwFs), an abstract semantics for Martin-Löf type theory (MLTT) which is very close to the syntax. Thus, DCCCs accomplish mathematical elegance as well as a direct interpretation of the syntax. Moreover, they capture the categorical counterpart of the generalization of the simply-typed lambda-calculus (STLC) to MLTT in syntax, and give a systematic perspective on the relation between categorical semantics for these type theories. Furthermore, we construct a term model from the syntax, establishing the completeness of our interpretation of MLTT in DCCCs.

    • CommentRowNumber2.
    • CommentAuthorNikolajK
    • CommentTimeApr 25th 2017

    So he reviews Martin-Loef Type Theory (MLTT) an Categories with Families (CwF) and how the former can be interpreted in the latter. Then he introduces Dependent Categories with nice features (DCCC), which I think have a relatively straight forward definition and how those induce relevant CwF. It’s too bad he doesn’t seem to discuss “MLTT in DCCC” directly, you need to read up the whole bridge over CwFs to understand what’s happening.