Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality education elliptic-cohomology enriched fibration foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory lie-theory limit limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monads monoid monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes science set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeFeb 17th 2010
    • (edited Feb 17th 2010)

    added to Grothendieck construction a section Adjoints to the Grothendieck construction

    There I talk about the left adjoint to the Grothendieck construction the way it is traditionally written in the literature, and then make a remark on how one can look at this from a slightly different perspective, which then is the perspective that seamlessly leads over to Lurie's realization of the (oo,1)-Grothendieck construction.

    There is a CLAIM there which is maybe not entirely obvious, but straightforward to check. I'll provide the proof later.

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeFeb 18th 2010

    Grothendieck construction works more generally: for lax contravariant functors and colax covaraint functors, not only the pseudofunctors. This directedness aspect would be nice to emphasise.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeFeb 18th 2010

    Okay, but then let's put this in different sections.

    So what kind of fibration do lax functors correspond to under the construction?

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeFeb 18th 2010
    • (edited Feb 18th 2010)

    One of the Thomason's papers works in this generality, but I do not remember the conclusion. However the composition is well defined so the formal construction works whatever is obtained. One can not exchange lax and colax though.

    • CommentRowNumber5.
    • CommentAuthorMike Shulman
    • CommentTimeFeb 19th 2010

    @Urs: Since the Grothendieck construction is an equivalence, its inverse equivalence is both a left and a right adjoint to it. But it seems weird to me to talk about adjoints more specifically. Are you thinking of it as acting only on strict functors?

    Regarding lax functors, the most general statement is that an arbitrary functor X-->C corresponds to a lax functor C^op --> Prof. If all precartesian liftings exist, then the corresponding lax functor lands in Cat, while if precartesian arrows are closed under composition (hence are cartesian, and the functor is a fibration) then it is a pseudofunctor.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeFeb 19th 2010


    the section on adjoints is supposed to discuss the adjoint pair between all of Cat/C and [C^op,Cat], where it's not an equivalence.

    But I see that I didn't say this clearly, will try to imrpove on this.

    And, yes, internally I was thinking of strict functors.

    The point of this comment was meant as indicating how the construction described at (infinity,1)-Grothendieck construction does indeed reduce to the ordinary construction.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeFeb 19th 2010

    Oh, and thanks for the info on [C^op,Prof]. We should add these generalizations to the entry. At least point out a reference.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeMar 10th 2010

    expanded the Idea-section at Grothendieck construction

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeMar 11th 2010
    • (edited Mar 11th 2010)

    started writing out the details of the proof for that description of the left adjoint of the Grothendieck construction in terms of that cone construction. See the new section In terms of the cone construction.

    This requires more polishing notably to wards the end, which I fill in later when I am less tired. But I think the main ingredients are there.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeMar 17th 2010

    added to Grothendieck construction a Properties-section with a formal statement of the equivalence induced by the construction.

    (I know this overlaps with stuff at Grothendieck fibration but it deserves to be stated here, too.)

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeMar 25th 2010

    I further expanded Grothendieck construction, trying to bring it closer to something like a self-contained exposition.

    • CommentRowNumber12.
    • CommentAuthorFinnLawler
    • CommentTimeDec 23rd 2011

    At Urs’s suggestion, I’ve expanded on the lax colimit property of the Grothendieck construction here.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeDec 23rd 2011


    • CommentRowNumber14.
    • CommentAuthoradeelkh
    • CommentTimeApr 8th 2014

    I added the reference

    However there is already the older reference

    which supposedly does the same thing. I don’t have time to look into the difference at the moment, but feel free to add a remark if you know.

    • CommentRowNumber15.
    • CommentAuthorTim_Porter
    • CommentTimeApr 8th 2014
    • (edited Apr 8th 2014)

    I fixed two dead links. (People change universities and old links do not continue to work! Perhaps Barr and Wells needs to be secured somewhere as the old URL failed. I replaced it by Mike Barr’s copy)

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeApr 8th 2014

    I suppose this should be linked at (infinity,1)-Grothendieck construction (too).

    • CommentRowNumber17.
    • CommentAuthorKarol Szumiło
    • CommentTimeAug 13th 2014

    I have a question about what Mike wrote in #5 that functors with enough weakly cartesian morphisms (not necessarily closed under composition) correspond to lax 22-functors into small categories. It seems to me that this will only work if units are actually preserved on the nose. Without that even the existence of the Grothendieck construction (more precisely, the unitality of composition) seems problematic. Is that right?

    • CommentRowNumber18.
    • CommentAuthorMike Shulman
    • CommentTimeAug 13th 2014

    I think that’s right, it should be normal lax functors.

    • CommentRowNumber19.
    • CommentAuthorKarol Szumiło
    • CommentTimeAug 14th 2014

    OK, thanks! Do you know any source that discusses the Grothendieck construction in this generality?

    • CommentRowNumber20.
    • CommentAuthorDavidRoberts
    • CommentTimeAug 14th 2014
    • (edited Aug 14th 2014)

    I’m sure there’s something related to it in the work that Bénabou is promising to write about ;-)

    • CommentRowNumber21.
    • CommentAuthorZhen Lin
    • CommentTimeAug 14th 2014

    Speaking of Grothendieck constructions, I wonder if any statement of the following kind is true / known:

    Let \mathcal{B} be a category and let F:𝔼𝔼F : \mathbb{E}' \to \mathbb{E} be a \mathcal{B}-indexed functor. If the components of FF are Grothendieck fibrations (+ possibly other conditions), then F:𝔼𝔼\int F : \int \mathbb{E}' \to \int \mathbb{E} is also a Grothendieck fibration.

    In particular, for the case where 𝔼\mathbb{E} is the terminal \mathcal{B}-indexed category, this would recover the fact that the canonical projection is a Grothendieck fibration.

    • CommentRowNumber22.
    • CommentAuthorMike Shulman
    • CommentTimeAug 14th 2014

    @Karol: I can’t think of one off the top of my head.

    @Zhen: You may be looking for this theorem.

    • CommentRowNumber23.
    • CommentAuthorZhen Lin
    • CommentTimeAug 14th 2014

    That looks good, thanks! What I was thinking about was actually the two-sided Grothendieck construction 𝔼*𝔽\mathbb{E} \ast \mathbb{F}, which is a Grothendieck fibration over 𝔽\int \mathbb{F} and a Grothendieck opfibration over 𝔼\int \mathbb{E}.

    • CommentRowNumber24.
    • CommentAuthorMike Shulman
    • CommentTimeOct 17th 2017

    I added to Grothendieck construction the fact that it preserves local smallness, which came up at this thread.

    • CommentRowNumber25.
    • CommentAuthorMike Shulman
    • CommentTimeApr 12th 2018

    Add reference to Beardsley-Wong enriched Grothendieck construction.

    diff, v53, current

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeApr 12th 2018
    • (edited Apr 12th 2018)

    I made “enriched” and “Jonathan Beardsley” become hyperlinks (here)

    • CommentRowNumber27.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 15th 2018

    Thanks, fixed now.

    I’d go ahead with any such changes yourself. There are plenty of them to be found. If you’re in any doubt, you can just fill in the changes box to alert nForum users.

    diff, v55, current

    • CommentRowNumber28.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 15th 2018
    • (edited Sep 15th 2018)

    Comment #27 is referring to this comment.

  1. The page says that the Grothendieck construction functor has both a left and right adjoint, and then goes on to describe the left adjoint while saying that “much of the traditional literature discusses (just) the right adjoint”. What is the right adjoint and where can I go to read about it?

    • CommentRowNumber30.
    • CommentAuthorAli Caglayan
    • CommentTimeFeb 15th 2019
    • CommentRowNumber31.
    • CommentAuthorMike Shulman
    • CommentTimeFeb 16th 2019

    I don’t know what “traditional literature” the page is referring to, but the definition of a right adjoint valued in a presheaf category can be deduced by mapping out of the images of representables under its left adjoint. That is, if RR is this left adjoint, then by adjointness R(D)(c)R(D)(c) must be the hom-category (Cat/C)((C(,c)),D)(Cat/C)(\int( C(-,c)) , D) (at least if the adjunction is CatCat-enriched, which I assume it is).

    • CommentRowNumber32.
    • CommentAuthorGuest
    • CommentTimeApr 20th 2019
    Sorry if I made any mistakes, but how could Hom(c,v) be c/p? I think K(p) mentioned in the cone construction is (2,1)-category, so its hom-space is groupoid. But the comma category c/p usually has non-invertible morphisms... Am I right?
  2. created links for “Grothendieck construction for monoidal categories” and “Christina Vasilakopoulou”

    Joe M

    diff, v58, current

    • CommentRowNumber34.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMar 18th 2020

    Added a description of the right adjoint to the Grothendieck construction.

    diff, v61, current

    • CommentRowNumber35.
    • CommentAuthorEric
    • CommentTimeSep 14th 2020
    • (edited Sep 14th 2020)

    Hi there (a voice from the past here) :)

    Worlds are colliding and category theory is starting to pervade my universe of computational physics / finance and I’m trying to get a handle on Grothendieck construction.

    As an initial step, I’m trying to understand the “universal Cat bundle” Cat *,lCatCat_{*,l}\to Cat. The page refers to Cat *,lCat_{*,l} as a “slice”. Another good reference:

    • Section 2.2 (page 8) of

    also refers to this as a “slice”, but when I look at the definition, it looks like a coslice / under category */Cat*/Cat. What am I missing?

    • CommentRowNumber36.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 14th 2020
    • (edited Sep 14th 2020)

    It definitely is a coslice. Or, if you like, a slice under rather than a slice over.

    • CommentRowNumber37.
    • CommentAuthorEric
    • CommentTimeSep 14th 2020

    Thank you David :)

    • CommentRowNumber38.
    • CommentAuthorvarkor
    • CommentTimeSep 30th 2020

    Add conditions for the Grothendieck construction to have limits and colimits.

    diff, v63, current

    • CommentRowNumber39.
    • CommentAuthorHurkyl
    • CommentTimeOct 8th 2020
    • (edited Oct 8th 2020)

    I wanted to verify something. If we restrict to the case of strict functors between 1-categories, is it correct that the Grothendieck constructions are given by

    :Cat CCat:FC / CF \int : \Cat^C \to \Cat : F \mapsto C_{\bullet/} \otimes_{C} F :Cat C opCat:FF CC / \int : Cat^{C^{op}} \to \Cat : F \mapsto F \otimes_C C_{/\bullet}

    where C /:C opCatC_{\bullet/} : C^{op} \to \Cat and C /:CCatC_{/\bullet} : C \to \Cat are the coslice and slice constructions whose action on arrows is the pre/post composition functors, C\otimes_C is the functor tensor product (induced by the ordinary product on CatCat), and both come equipped with a natural projection (F)C(\int F) \to C?

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)