Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeJul 3rd 2017
    • (edited Jul 3rd 2017)

    I have written out a detailed classical point-set proof that the fundamental group of the circle is the integers: here.

    • CommentRowNumber2.
    • CommentAuthorTodd_Trimble
    • CommentTimeJul 3rd 2017

    Another proof that might be nice to add at some point would use the groupoid version of the van Kampen theorem, applied to a standard good cover of S 1S^1.

    • CommentRowNumber3.
    • CommentAuthorPeter Heinig
    • CommentTimeJul 3rd 2017
    • (edited Jul 3rd 2017)

    Another proof that might be nice to add at some point would use the groupoid version […]

    Coincidentally, there is a rather unusual treatment of π(S 1)\pi(S^1)\cong \mathbb{Z}, given by Tammo tom Dieck in his recent monograph “Algebraic Topology” (he emphasizes the groupoidal and functorial treatment, constructing a topological groupoid and an explicit isomorphism to Π(S 1)\Pi(S^1), and only in the end mentions the universal group as corollary about an automorphism group of an arbitrarily chosen point in the groupoid).

    In the long run, as a result of the unique confluence of people and technology round here, the article fundamental group of the circle is the integers could become the most informed and modern treatment of this iconic theorem that the world has ever seen.

    In the short run, a rendition of tom Dieck’s proof from his monograph (the proof is in Section 2.7 of the book), perhaps conceptually compared with Urs’s proof, could be a next step, possibly with some cross-referencing to fundamental groupoid, where π(S 1)\pi(S^1)\cong\mathbb{Z} seems not yet been mentioned.

    (edited to make it clearer; by “this theorem” I did not mean the van Kampen theorem, but the subject matter of fundamental group of the circle is the integers itself.)

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeJul 3rd 2017

    Todd, that’s a good idea. First we should type up an elementary proof of the van Kampen theorem itself.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJul 19th 2017

    added a section “Consequences” (here), so far with the remark that iso-classes of finite covering spaces over the circle are labeled by conjugacy classes of symmetric groups, and the explicit example for three-sheeted coverings.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)