Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 2nd 2017

    adjoint operator was in a very poor state, so I copied in at least the start of self-adjoint operator.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2023

    Before the line saying that adjoint operators need not exist in general, I added the sentence that on finite-dimensional Hilbert spaces they do.

    diff, v4, current

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeNov 16th 2023
    • (edited Nov 16th 2023)

    added (here) a quote by MacLane on the history of the notion:


    Two of von Neummann’s papers on this topic [Hilbert spaces] had been accepted in the Mathematische Annalen, a journal of Springer Verlag. Marshall Stone had seen the manuscripts, and urged von Neumann to observe that his treatment of linear operators T on a Hilbert space could be much more effective if he were to use the notion of an adjoing Tast to the linear transformation T — one for which the now familiar equation

    Ta,b=a,T*b

    would hold for all suitable a and b. Von Neumann saw the point immediately, as was his wont, and wishes to withdraw the papers before publication. They were already set up in type; Springer finally agreed to cancel them on the condition that von Neumann write for them a book on the subject — which he soon did [1932].

    This story (told to me by Marshall Stone) illustrates the important conceptual advance represented by the definition of adjoint operators. &lbrack…] I have written elsewhere [1970] that it is a step toward the subsequent description of a functor G right adjoint to a functor F, in terms of a natural isomorphism

    hom(Fa,b)hom(a,Gb)

    between hom-sets in suitable categories.


    diff, v5, current