Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology combinatorics complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality education elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monad monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 17th 2018

    I added references to John Baez’s two blog posts on The Geometric McKay Correspondence, Part I, Part II.

    I hadn’t realised the length of legs in the Dynkin diagrams corresponds to the stabilizer order on vertices, edges, faces in the corresponding Platonic solid. So 2,3,5 for E 8E_8 and the icosahedron.

    diff, v5, current

    • CommentRowNumber2.
    • CommentAuthorDavid_Corfield
    • CommentTimeMay 8th 2018

    I added mention of Gonzalez-Sprinberg and J.-L. Verdier’s K-theoretic interpretation as discussed in the ’The McKay correspondence as an equivalence of derived categories’.

    diff, v6, current

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeMay 9th 2018

    If the comparison is between equivariant K-theory of 2\mathbb{C}^2 and ordinary K-theory of 2/G\mathbb{C}^2/G, is that an Elmendorf-theorem situation?

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeMay 9th 2018

    Haven’t looked yet at the article that you are looking at, but Elmendorf’s theorem is about restricting to fixed points, not about passing to quotients (not manifestly and directly, at least).

    • CommentRowNumber5.
    • CommentAuthorDavid_Corfield
    • CommentTimeMay 9th 2018

    I was drawing on the Bridgeland et al. article for that K-theoretic description, which they propose to generalise to

    G-equivariant K theory of M [=X/G] and the ordinary K theory of a crepant resolution Y of X,

    But, as you say, I guess that’s not about fixed points.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeMay 9th 2018

    Thanks for the pointer. Interesting.

    But, yes, that old trick with those du Val resolutions is presently not related, beyond the general context, to the perspective through Elmendorf’s theorem. I wish I knew how to make an tighter connection between the two.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJan 22nd 2019

    finally added pointer to the original reference

    • John McKay, Graphs, singularities, and finite groups Proc. Symp. Pure Math. Vol. 37. No. 183. 1980

    diff, v22, current

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJan 23rd 2019
    • (edited Jan 23rd 2019)

    I have expanded and re-organized:

    First of all I brought in the paragraphs that I had yesterday typed into McKay quiver to finally state the original idea of the correspondence, as actually given by McKay.

    Then I aligned that more systematically with the other two perspectives on (refinements of) the correspondence, that via equivariant K-theory and that via Seiberg-Witten theory.

    diff, v25, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)