Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 24th 2018

    changed page name to singular

    v1, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 24th 2018

    …or rather I meant to. Something went wrong. I’d still want to, but I refrain from doing it now in order not to generate a messy flood of empty threads here

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeOct 27th 2021

    made explicit (here) statement and proof (via Euler characteristics) that the only finite group with a free action on any even-dimensional sphere is /2\mathbb{Z}/2.

    diff, v6, current

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeOct 27th 2021

    I have expanded and re-organized the material on free actions of finite groups on nn-spheres a little, merging its subsection (now here) with the previously puny subsection on spherical space forms.

    In particular, and for what it’s worth, I have made explicit (here) the example of the free action of finite subgroups of Sp(1)Sp(1) on all S 4n+3S^{4n+3}-spheres.

    diff, v7, current

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeOct 27th 2021

    added also pointer to the Lefschetz fixed point theorem and the implication (here) that therefore the only free action of a finite group on an even-dimensional sphere must be by /2\mathbb{Z}/2 and must be orientation reversing.

    This almost shows that it must be the antipodal action, but still needs an argument for why there can be no other orientation-reversing action of /2\mathbb{Z}/2.

    diff, v8, current

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeOct 27th 2021

    added statement (here) of the Madesen-Thomas-Wall theorem

    diff, v9, current

    • CommentRowNumber7.
    • CommentAuthorrafayaashary01
    • CommentTimeOct 28th 2021
    • (edited Oct 28th 2021)

    For what it’s worth, the hinted proof of Remark 2.6 should also suffice as an independent proof of Proposition 2.4:

    Every free continuous GG action on S 2nS^{2n} induces a group morphism deg:GEnd Ab(H 2n(S 2n)) ×/2deg \colon G \to End_{Ab}(H_{2n}(S^{2n}))^{\times} \simeq \mathbb{Z}/2 (where End Ab(H 2n(S 2n)) ×End_{Ab}(H_{2n}(S^{2n}))^{\times} is the group of units of the endomorphism ring of H 2n(S 2n)H_{2n}(S^{2n})), and Lefschetz says that any element of the kernel of degdeg has a fixed point and is thus the identity, i.e., that ker(deg)=1ker(deg) = 1.

    As for that the nontrivial map of any such /2\mathbb{Z}/2 action is homotopic to the antipodal action, is there any simple approach that doesn’t boil down to that π 2n(S 2n)H 2n(S 2n)\pi_{2n}(S^{2n}) \simeq H_{2n}(S^{2n}) naturally by Hurewicz?

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeOct 28th 2021

    Thanks. True, the /2\mathbb{Z}/2-action is necessarily unique up to homotopy, but when comparing continuous actions, we’d want to classify them up to homeomorphism. But yeah, I suppose that follows. Will make an edit…

    • CommentRowNumber9.
    • CommentAuthorrafayaashary01
    • CommentTimeOct 28th 2021
    • (edited Oct 29th 2021)

    Edit: Ignore the following.

    Per this paper, there exist continuous involutions of S 4nS^{4n} with quotient not homeomorphic to P(,4n)\mathbf{P}(\mathbb{R}, 4n), making such a classification apparently difficult.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeOct 28th 2021
    • (edited Oct 28th 2021)

    Thanks, interesting. That would explain why I am getting stuck here…

    But does that article give a pair of non-homomorphic involutions on an actual even-dim sphere, or just on a homotopy sphere?

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeOct 28th 2021

    Ah, their other article here is very explicit at least about non smoothly-homomorphic involutions on S 2nS^{2n}s. Will dig into this, thanks again for the pointer.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeOct 28th 2021
    • (edited Oct 28th 2021)

    I have now added here a list of numbers of isomorphism classes of examples of non-standard smooth free involutions on nn-spheres for low nn, with pointers to the literature.

    My understanding is that these all refer to the standard smooth structure on the spheres, with just the involution being non-standard. But particularly for the reference Lopez de Medrano 1971 this detail remains somewhat hidden (to me) behind the notation used there.

    diff, v12, current

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeOct 28th 2021

    I have expanded the section “General obstructions and existence” (here) adding mentioning now also of Milnor’s 2p2p-condition and of Zassenhausen’s pqp q-conditions for orthogonal actions (though that really belongs to a section on isometric actions which is as yet missing)

    diff, v14, current

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeOct 29th 2021

    For completeness, I have added as an example (here) how the ADE-classification confirms that the finite subgroups of SU(2)SU(2) satisfy Smith’s p 2p^2-condition and Milnor’s 2p2 p-condition, while finite subgroups of SO(3)SO(3) may violate the latter.

    diff, v16, current

    • CommentRowNumber15.
    • CommentAuthorrafayaashary01
    • CommentTimeOct 29th 2021

    Re comments 10 and 11, I agree and now doubt whether my claim in comment 9 is even true. I asked a few friends to no avail and subsequently submitted the question to MO. Hopefully someone will know!

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeOct 30th 2021

    Thanks again.

    The reply by I. Belegradek here seems to again be concerned with double covers by homotopy-spheres instead of actual spheres, though I haven’t yet followed the references given.

    On the other hand, comparing to the the book by Lopez de Medrano, which is mostly concerned with classification of /2\mathbb{Z}/2-actions on S nS^{n} in the piecewise-linear category (with some remarks for the smooth category but apparently no comments on the continuous category), the counting turns out at least similar to what Belegradek gives (which is maybe not surprising, just saying it for the record):

    By the classification result that Lopez de Medrano previews on p. 2 (11 of 114) there are always at least four involutions up to piecewise-linear homomorphisms on the nn-sphere for n>4n \gt 4, and there is a finite number of them unless n3n-3 is divisible by 4.

    At least for n{5,6,7}n \in \{5,6,7\} this pattern also applies to involutions up to smooth homomorphism, as LdM discusses in Sec. V.6.1. By the discussion there, the counting up to diffeomorphism agrees with that up to pl-homeo for S 5S^5 and S 6S^6, but where the 7-sphere has /4\mathbb{Z}/4 \oplus \mathbb{Z} worth of involutions up to pl-homeo, it has /2/28\mathbb{Z}/2 \oplus \mathbb{Z}/28 \oplus \mathbb{Z} worth up to diffeos. (I am unsure whether this refers to non-standard involutions on the standard smooth 7-sphere, or if it also allows exotic smooth structure on the 7-sphere. On first reading/scanning of the book I thought the former, now I think maybe the latter. I wish the author had made this a little more transparent. )

    It’s somewhat strange that, as far as i can see, LdM does not at least comment on the situation up-to-homeomorphism.

    • CommentRowNumber17.
    • CommentAuthorrafayaashary01
    • CommentTimeOct 30th 2021

    After racking my brain for a long while, I think I’ve found the missing ingredient: the Poincaré conjecture for topological manifolds of the appropriate dimension! After all, a topological manifold homotopy equivalent to P(,2n)\mathbf{P}(\mathbb{R}, 2n) will have universal cover a topological manifold homotopy equivalent to S 2nS^{2n}, whence homeomorphic to S 2nS^{2n}. (The best citable reference that I could find in the n5n\geq 5 case is Theorem 7 of this paper.)

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeOct 30th 2021

    I see. That’s of course a good point.

    Just to record this, I have made a brief note in the entry on what we have now regarding continuous involutions up to homeomorphism: here.

    This is not meant to do justice to the topic, but just a note not to forget. Please feel invited to edit.

    diff, v17, current

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeNov 22nd 2021
    • (edited Nov 22nd 2021)

    I am wondering about the following:

    Is this example an instance of a general pattern?

    Namely, the plain dihedral groups do not have free actions on spheres, but the binary dihedral groups do. Could it be true in general that for GG any group which does not act freely on any sphere, there is a G^G\widehat G \to G such that G^\widehat G does have free actions on some spheres?

    • CommentRowNumber20.
    • CommentAuthorGuest
    • CommentTimeDec 13th 2021

    I have now forwarded this question (comment #19) to MathOverflow: here.

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeDec 13th 2021

    added pointer to:

    (This was kindly pointed out to me by Will Sawin in MO:a/410691. While I don’t see yet how it helps with the question I was asking, it sure is a good reference to have.)

    diff, v20, current

    • CommentRowNumber22.
    • CommentAuthorUrs
    • CommentTimeDec 14th 2021
    • (edited Dec 15th 2021)

    I admit that I am puzzled by MO. I still don’t see how MO:a/410691 is more than a re-statement of my question, but voters seem to think it’s about twice as insightful. What am I missing?

    [edit: I see, I was missing that the main point of the argument is to show that there must be finite groups none of whose covers acts freely on some sphere.]

    It seems to me that to make use of classification results for 𝒫\mathcal{P}-groups in this context, we would first need a compatible classification of coverings of finite groups, but maybe I am missing something.

    I still find the suggestion that I make in the question more concretely promising: Look for coverings that are non-trivial over all non-cyclic subgroups and of an order such that multiplying with it enforces the 2p2 p and p 2p^2 condition. E.g. if the non-trivial extension is of order 2 22^2 then all subgroups of order rr on which this extension remains non-trivial become subgroups of order 2 2r2^2 \cdot r, which is guaranteed to satisfy both conditions.

    The problem is then to guarantee that the extension is non-trivial on all non-cyclic subgroups. This is a problem in non-abelian group cohomology, which seems more likely to be solvable. Of course, my intuition may be wrong here.

    • CommentRowNumber23.
    • CommentAuthorRichard Williamson
    • CommentTimeDec 14th 2021
    • (edited Dec 14th 2021)

    Hi Urs, I’ve not thought about this at all, but regarding your puzzlement, you asked…

    Maybe all finite groups can be covered by ones that act freely on some sphere?

    ….and the answer says that the only possible finite groups with this property are ones for which the following holds.

    their Sylow subgroups must be cyclic, generalized quaternion, or dihedral

    Such finite groups are certainly way less than all finite groups, so the answer to the question I quoted certainly seems to be ’no’, even if it remains open exactly how much more general such groups with a cover admitting the required action are than those which themselves have such an action (not very, I’d guess).

    • CommentRowNumber24.
    • CommentAuthorUrs
    • CommentTimeDec 15th 2021

    even if it remains open exactly how much more general such groups with a cover admitting the required action are than those which themselves have such an action

    And that is, once again, the question I am asking. :-)

    I had recalled the full characterization of finite groups admitting such free actions quite explicitly, its those groups that satisfy the “p 2p^2-condition and the “2p2p-condition”, and I had added pointer to examples, to counter-examples, and to a case where a class of counter-examples does have covers that are examples – all recorded in some detail in this entry, group actions on spheres.

    I still think it’s a reasonable question to ask how generic this last case is and I indicated a somewhat effective strategy to solve this. I thought somebody out there may have more developed thoughts on the matter, but if that’s not the case that’s okay, I just thought I give it a try.

  1. I haven’t thought about your strategy, but the answer gives two pieces of information: a) the only difference in passing to covers is that dihedral groups are allowed as Sylow subgroups b) apparently there is a classification of exactly what groups that can happen for. Assuming that that classification is tractable, it should be a fairly trivial if tedious matter of going through all of the possibilities. But even if one doesn’t do that, it is clear that there is not a vast degree of extra generality by passing to covers, certainly far from all finite groups, which I’d guess is why people feel it is a decent answer. But I’ll bow out here :-).

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeDec 15th 2021

    I see, true, the argument gives that the property cannot hold for all finite groups.

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeJul 6th 2022

    added pointer to:

    diff, v22, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)