Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 24th 2018

    Presently this entry has much overlap with Clifford-Klein space form and group actions on spheres. Eventually the three will diverge.

    v1, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 25th 2018

    Fine-tuned and corrected (hopefully) the description in the Idea-section at spherical space form. Right now it reads as follows:

    A spherical space form is a quotient space S n/GS^n/G of a round Riemannian n-sphere (n2n \geq 2) by a subgroup GG of its isometry group, which acts freely and properly discontinuously.

    Equivalently, a spherical space form is a Riemannian manifold of constant positive sectional curvature (an elliptic geometry) which is connected and geodesically complete (see e.g. Gadhia 07, Lemma 5).

    diff, v3, current

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeApr 25th 2018
    • (edited Apr 25th 2018)

    finally spelled out the full statement (here) of the ADE-classification of 7d spherical space forms equipped with spin structures admitting N4N \geq 4 Killing spinors

    diff, v3, current

    • CommentRowNumber4.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 25th 2018

    Is the expectation that all of those 7d spherical space forms partake in the AdS4/CFT3-correspondence? That ABJM theory just concerns the A-type singularities?

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 25th 2018
    • (edited Apr 25th 2018)

    Yes, that was the motivation for the classification by Figueroa-O’Farrill et al., stated in the first paragraphs of their MFFME 09 and MFFGME 09.

    The N=5N = 5-analogs of the ABJM model (hence for the dihedral and exceptional finite groups acting diagonally on 2 8\mathbb{H}^2 \simeq \mathbb{R}^8) have been identified (I have added pointers here).

    I am not sure about the state of the discussion of the N=4N =4-case. But clearly one expects this to exist.

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeApr 25th 2018

    Thanks!

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeApr 25th 2018

    ah, the N=4N=4-case is discussed in section 4.3 of Bagger-Lambert-Mukhi-Papageorgakis 13. I am not sure, though, whether corresponding singularity structure is discussed

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeOct 24th 2021
    • (edited Oct 24th 2021)

    I am meaning to write out (here) a detailed proof that for Γ\Gamma an nn-truncated topological group (e.g. PU(ℋ) for n2n \geq 2) and S n+2/GS^{n+2}/G a spherical space form of dimension n+2n + 2, the comparison morphism

    ʃMap(BG,BΓ)ʃMap(p//G,BΓ)ʃMap(S n+2/G,BΓ) ʃ \, Map \Big( \mathbf{B}G ,\, \mathbf{B}\Gamma \Big) \xrightarrow {\;\;\; ʃ \, Map(p/\!\!/G,\,\mathbf{B}\Gamma) \;\;\;} ʃ \, Map \Big( S^{n+2}/G ,\, \mathbf{B}\Gamma \Big)

    is an equivalence of \infty-groupoids.

    The idea is simple: By the truncation condition we have 1. that Γ\Gamma-principal bundles on S n+2/GS^{n+2}/G are isomorphic to those pulled back from *G\ast \sslash G and 2. that all gauge transformations are concordant to those pulled back from *G\ast \sslash G.

    Carefully writing out this simple idea into a formal proof is becoming a little lengthy. So far the entry shows most of the argument for the iso on π 0\pi_0. Once this is stated satisfactorily, the generalization to π n\pi_n should be immediate.

    So I am not done yet, but need to grab some late lunch and some coffee now.

    diff, v12, current

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeOct 24th 2021
    • (edited Oct 24th 2021)

    now this Lemma has a proof

    diff, v14, current

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2021
    • (edited Oct 25th 2021)

    It dawned on me that my proof strategy only makes sense if I first show that the simplicial sets in question are Kan complexes.

    So I have now added a lemma (here) showing in detail the existence of 2-horn fillers.

    The filling of the higher horns “clearly” follows by the same mechanism. However, once again, it seems a bit of a pain to turn this evident idea into a fully formal proof.

    diff, v18, current

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeOct 25th 2021

    have now concluded proper proof (here) that the comparison map is an iso on π 0\pi_0.

    The hope was that from here the generalization to the case of general π n\pi_n would be straightforward. Let’s see…

    diff, v19, current

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2021

    I have given the lemma regarding surjectivity on π 1\pi_1 a big diagram that shows the construction of the required homotopy in some detail (here).

    But I got stuck on proving that this homotopy really fixes both endpoints (it’s clear for the left one, but subtle for the right one), without further assumption.

    So I added now one more assumption on the structure group Γ\Gamma, namely that Shp(Γ)Shp(\Gamma) be braided, hence that BΓB \Gamma has group structure itself. (This is a harmless assumption in the intended applications, where Shp(Γ)Shp(\Gamma) is a truncation of a connective spectrum).

    With this assumption, also the space of concordances inherits \infty-group-structure (using the smooth Oka principle, now this Remark) which implies that we may compute the fundamental group equivalently in any connected component. But in the connected component of the trivial cocycle the above issue goes away.

    With that, I think I have now typed out detailed proof that the comparison map is an iso on homotopy groups in degrees 1\leq 1, which “obviously” generalizes to all higher homotopy groups.

    Next I should add some subsections to disentangle all the lemmas from the main claim to make it discernible. Will do…

    diff, v21, current

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2021

    Okay, have re-organized a little to clean up, and have given it a lead-in and overview paragraph: here

    diff, v21, current

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeOct 27th 2021
    • (edited Oct 27th 2021)

    I have now considerably relaxed the running Assumption (here) by appealing to the Madsen-Thomas-Wall theorem (here):

    Now Γ\Gamma is just required to be nn-truncated for any nn, no longer depending on GG (as the MTW theorem says that if GG acts freely and smoothly on any dd-sphere, then it does so on one whose dimension exceeds any given bound n+2n + 2).

    diff, v27, current

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeOct 29th 2021

    am adding more references, such as to

    diff, v29, current