Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
Looking back at an old Café thread, I see Neil Strickland telling us about Baas-Sullivan theory.
Various comments:
1) Baas-Sullivan theory allows you to start with a cobordism spectrum R and introduce singularities to construct R-module spectra that can be thought of as R/(x1,…,xn), where xi ∈ π*R.
2) This is computationally tractable when the elements xi form a regular sequence. You can construct connective Morava K-theories from complex cobordism this way, for example. You can also get ordinary homology, as the cobordism theory of complexes that are allowed arbitrary singularities of codimension at least two.
3) The original Baas-Sullivan framework is quite technical, and combinatorially complex. It is now easier to use the framework developed in the book by Elmendorf, Kriz, Mandell and May.
4) This procedure always gives R-modules, so if you start with MU (= complex cobordism) or MSO or MO, you will always end up with something complex orientable. In particular, you cannot get tmf or KO or the sphere spectrum from MU.
5) You can get more things if you do cobordism of manifolds with extra structure, such as a spin bundle or framing, for example. It is probably possible to get kO from MSpin. It might even be possible to get tmf from MString.
6) There is a theorem that I think appears in an old book by Buoncristiano, Rourke and Sanderson, showing that any generalised homology theory is a cobordism theory of manifolds with some kind of extra structure and singularities. I don’t think that they were able to given any nonobvious concrete examples other than ordinary homology, and I don’t think that anyone else has managed to go anywhere with this theory. But perhaps it would be worth taking another look.
Let’s see if any passing expert can help with an entry.
1 to 1 of 1