Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory lie lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorRodMcGuire
    • CommentTimeJun 14th 2018

    Anonymous “helpfully” changed the statement

    A matrix is a list of lists.

    to

    A matrix is a function M:[n]×[m]XM:[n]\times[m]\rightarrow X from the Cartesian product [n]×[m][n]\times[m] to a set XX.

    which I have reverted back.

    diff, v12, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeJun 14th 2018
    • (edited Jun 14th 2018)

    That anonymous has a good point here and I suggest we do re-edit the entry as they did.

    The only place that I have ever seen where a matrix is not defined as a rectangular array, but as a list of lists, … our nLab entry. I don’t think it’s right to say this. (Is it a computer science thing, maybe?) Certainly not without at least mentioning the actual definition that the rest of the world is using.

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 14th 2018

    It can always say both, but yes surely the rectangular array first.

    • CommentRowNumber4.
    • CommentAuthorMike Shulman
    • CommentTimeJun 14th 2018

    I don’t think it’s even correct to say that a matrix is a list of lists; that would include things like [[1,2],[3],[4,5,6]][[1,2],[3],[4,5,6]] whereas I’ve never heard of a “matrix” being anything other than rectangular, with all sub-lists of the same length.

    A different direction of generalization, however, is that matrices don’t have to be finite; in some contexts it makes sense to call any function out of a cartesian product set a “matrix”. In a context with “infinite sums”, like objects of a cocomplete category, we can even “multiply” such infinite matrices, leading for instance to the bicategory of matrices of objects in a cocomplete closed monoidal category.

    • CommentRowNumber5.
    • CommentAuthorTim_Porter
    • CommentTimeJun 14th 2018

    I do not like ’list of lists’ as there would also be confusion between being it a list of the rows and a list of the columns in the normal way of ’drawing’ a matrix. The definition suggested by the anonymous contributor has the advantage that it is independent of the way one writes down the ’matrix’. Of course, one can Curry that definition to get M:[n]X [m]M:[n]\to X^{[m]}, and so on.

    • CommentRowNumber6.
    • CommentAuthorMike Shulman
    • CommentTimeJun 14th 2018

    Reverted back to Anonymous’s version, and added a mention of infinite matrices.

    diff, v13, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)