Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeOct 4th 2018

    I am compiling character tables of various groups. For ease of including into related entries (e.g. for isomorphic groups) I’ll give them their own little entries

    v1, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeOct 4th 2018
    • (edited Oct 4th 2018)

    I am wondering if there is a mistake in the real character table, taken from here.

    Namely our computation shows that, ρ 6ρ 7\rho_6 \oplus \rho_7 (in my notation here) is a rational rep, hence H 1/2H 2/2H_1/2 \oplus H_2/2 in the notation there. But this would imply that this is also a real rep, which is in contradiction to the claim there that only H 1=2(H 1/2)H_1 =2(H_1/2) and H 2=2(H 2/2)H_2 =2(H_2/2) are real.

    I’ve been in contact with James Montaldi. Will email him again…

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeOct 4th 2018

    Also he claims Q 8Q_8 is a normal subgroup, when this page says it isn’t. Who’s right?

    • CommentRowNumber4.
    • CommentAuthorDavid_Corfield
    • CommentTimeOct 4th 2018

    Actually, maybe that page doesn’t say that. I took it from the table where there is no entry in the column

    Size of each conjugacy class (=1 iff normal subgroup)

    But then below it says it appears four times as a subgroup and once as a normal subgroup. Oh I see the empty entry was in the row

    quaternion subgroup of one type

    So there are different types.

    OK, I’ll change that.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeOct 4th 2018

    It should be possible to deduce the real reps from the complex character table at Groupprops here. The two rows which I suggest need to be added to get a real rep are precisely the two rows from the Groupprops page that involve the root of unity denoted there E(8).

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeOct 5th 2018
    • (edited Oct 5th 2018)

    I think the Groupnames page GL(2,3) agrees with my suggestion in #2 that the real irreps here are incorrect:

    I gather that on Groupnames, as usual, they don’t state the Schur index precisely when it equals 1 – which here applies to all the complex irreps. But according to that other page it would 2 for the three reps in question.

    I have sent a message to the GroupProps people, to confirm. But given that I have independent computation which is consistent with Schur index 1 for all irreps of 2O, I’ll go ahead now and change the character table on the nnLab accordingly.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeOct 6th 2018
    • (edited Oct 6th 2018)

    Major relief: We found the resolution of the apparent contradiction regarding the real irrep characters of 2O.

    Remember that the issue was that James Montaldi’s real character table for 2O here was in apparent conflict with the complex character table on the Groupnames page GL(2,3). Montaldi’s table implicitly has three Schur indices =2, while GL(2,3) has all Schur indices =1.

    The resolution of this impasse is that “GroupNames” of all places, attached the wrong name to the group GL(2,3), and Wikipedia followed along. This is not 2O!! The binary octahedral group is instead CSU(2,3).

    Now curiously GL(2,3) and CSU(2,3) have almost the same character tables… differing only in those Schur indices!

    I just learned this from Tim Dokchitser, who I had asked for help with this. He says he has corrected both Wikipedia and Groupnames on this issue now, but that on Groupnames the correction will not become visible until some automatic updating mechanism will have picked it up.

    And I will fix the nnLab entries now, accordingly.