Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories newpage noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMar 22nd 2019

    while I am at it…

    v1, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 1st 2019

    I have added statement of the integral cohomology ring of BSO(3)B SO(3) (thanks to David R. for discussion), following Brown 82, or I hope I did:

    H (BSO(3),)[p 1,W 3]/(2W 3), H^\bullet\big( B SO(3), \mathbb{Z} \big) \;\simeq\; \mathbb{Z}\big[ p_1, W_3\big] / (2 W_3) \,,

    Brown’s Theorem 1.5 has a last tedious clause with a relation satisfied by the cup product of two SW classes. It looks to me that the whole clause collapses to nothing in the present case. But needs to be double checked.

    diff, v2, current

    • CommentRowNumber3.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 1st 2019
    • (edited Apr 1st 2019)

    Here’s another source

    Mark Feshbach, The Integral Cohomology Rings of the Classifying Spaces of O(n) and SO(n), Indiana Univ. Math. J. 32 (1983), 511-516. doi:10.1512/iumj.1983.32.32036

    The generators are indeed as you say. The relations are complicated, but I think they all turn out to be (except for 2W 3=02W_3=0) vacuous, for n=3n=3… I think.

    Here is another source, that looks a bit more tractable. If that Google Books link is not readable, it’s Section 4.2 of Differential Geometry and Mathematical Physics: Part II. Fibre Bundles, Topology and Gauge Fields by Gerd Rudolph and Matthias Schmidt (doi:10.1007/978-94-024-0959-8)

    Edit: Hmm, it looks to be open access. Try this link to go to the section in HTML format.

    • CommentRowNumber4.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 1st 2019

    Remark 4.2.25.1 of Rudolph–Schmidt’s book, together with Theorem 4.2.23 and Corollary 4.2.24 I think close the deal. It seems 2W 3=02W_3=0 is the only relation, so that the cohomology ring is [p 1,W 3]/(2W 3)\mathbb{Z}[p_1,W_3]/(2W_3).

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 1st 2019

    Thanks again!

    Yes, that book Rudolph-Schmidt shows some more effort to polish-up the statement of the theorem.

    It seems to be a nice book, generally. Have added pointer to it to a bunch of nLab pages now.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)