Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology combinatorics complex-geometry computable-mathematics computer-science connection constructive constructive-mathematics cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality education elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monad monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 1st 2019

    Page created, but author did not leave any comments.

    v1, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 1st 2019

    hyperlinked homotopical alggebra and, notably, pro-étale site

    diff, v2, current

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 10th 2019

    the natural map

    T(S)T(S)T(S× SS)T(S)\to T(S')\rightrightarrows T(S'\times_S S')

    is a bijection

    Which map is a bijection?

    • CommentRowNumber4.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJun 10th 2019

    It’s a fork, not a map. Fixed now.

    • CommentRowNumber5.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 11th 2019

    Thanks. I wonder if we can understand this development of condensed mathematics via cohesion. So there are situations where we are looking to do algebra with objects with a topology, but a unified method is lacking to deal with all such situations. Condensed mathematics is proposed as a solution.

    On p.6 some examples of problems are given. The first is that AbTop, the category of topological abelian groups, is not itself an abelian category. For instance we have a map from \mathbb{R} with the discrete topology to \mathbb{R} with the natural topology. However,

    In an abelian category, the failure of this map to be an isomorphism has to be explained by a nontrivial kernel or cokernel.

    Then the category of condensed abelian groups is abelian. (p. 11)

    So does this problem not arise in the cohesive treatment? For the map \flat \mathbb{R} to \mathbb{R} there is the homotopy fiber of the suspension of this counit, as at differential cohomology diagram, designed particularly for stable objects.

    The second problem is

    For a topological group GG, a short exact sequence of continuous GG-modules does not in general give long exact sequences of continuous group cohomology groups. More abstractly, the theory of derived categories does not mix well with topological structures.

    Does cohesion say something here?

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 11th 2019

    In view of the rival pyknotic sets, I guess we can ask similar questions. There’s a right and left adjoint to the underlying space of a pyknotic set.

    Barwick and Haines explicitly point out that there’s no further left adjoint, so not cohesive. I should add that over there.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJun 11th 2019
    • (edited Jun 11th 2019)

    I was wondering the same when I saw this development, but haven’t been following any details. On general grounds, cohesion or not, we have that mixing topology into group theory and homological algebra is of course the topic of stacks and higher topos theory. Here apparently mostly over a pro-etale site. Some months back at the modal type theory meeting in Pittsburgh, there was one coffeee break that saw some people get optimistic again about pro-etale toposes being cohesive. Would be a major thing, I hope somebody looks into it.

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeJun 11th 2019

    The failure of TopAbTopAb to be an abelian category is the same as the failure of TopTop to be balanced, and has the same solution: take cohesion to be stuff rather than structure in general. In particular, the category of abelian group objects in any topos is abelian; in a cohesive setting (and probably more generally too) the map \flat\mathbb{R} \to \mathbb{R} is injective but not surjective, and its cokernel is a nontrivial abelian group with (presumably) “only one point” but more “cohesive stuff”. This must also be what’s going on with condensed sets and pyknotic sets.

    • CommentRowNumber9.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 12th 2019

    Added Scholze’s modified version.

    diff, v5, current

    • CommentRowNumber10.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 12th 2019

    I’d like to understand this better. Barwick and Haines set things up so as deliberately to avoid cohesion:

    the topos Pyk(S)\mathbf{Pyk}(\mathbf{S}) is – by design – not cohesive in the sense of Schreiber

    Are you saying in #8, Mike, that the motivation to do so will disappear if cohesion is properly understood as stuff?

    • CommentRowNumber11.
    • CommentAuthorMike Shulman
    • CommentTimeJun 12th 2019

    I can’t say, since I don’t know what their motivation is for making it not cohesive. That remark doesn’t say.

    • CommentRowNumber12.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 13th 2019
    • (edited Jun 13th 2019)

    Well I guess it derives from this proétale business.

    There is a deep connection between the passage from objects to pyknotic objects and the passage from the étale topology to the proétale topology. (p. 2)

    So maybe one question is about how proétale-ness and cohesion fit together, in particular the discrete functor not have a left adjoint.

    There are also links to related matters I’ve wondered about. In Sec 4.3 they look at ultracategories as studied by Lurie. He used them when taking up Makkai’s work on conceptual completeness. You’ll see in this MO comment that something proétale is in the air there.

    [Note to self, if I ever have time, to look at Definability, interpretations and étale fundamental groups.]

    • CommentRowNumber13.
    • CommentAuthorMike Shulman
    • CommentTimeJun 13th 2019

    Right, cohesion depends on local connectedness/contractibility of the model spaces. If the spaces people are interested in are not locally connected, then we shouldn’t expect a shape functor (the example I’m more familiar with is Johnstone’s topological topos) – the type theory then is usually what I called “spatial type theory” with \flat and \sharp but no shape. I believe that’s unrelated to the issue of balancedness in #8.

    • CommentRowNumber14.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 13th 2019

    I wonder what the optimistic coffee break people of #7 who hope that pro-etale toposes are cohesive were thinking.

    • CommentRowNumber15.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 14th 2019

    Any such people might like to look through a discussion between Urs and Marc Hoyois (especially from #12 onwards).

    In my travels, I see that we were to merge proadjoint and pro-left adjoint, but never did. Is there a preference as to which is the main name and which the redirect?

    Why is the section at the latter called Pro-étale homotopy type, but it only goes on to speak of étale homotopy types?

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeJun 14th 2019

    Thanks for reminding me. There is a magnificent PhD thesis topic waiting here, ready to be picked. Who will do it?

    • CommentRowNumber17.
    • CommentAuthorTim_Porter
    • CommentTimeJun 14th 2019

    Perhaps that should be étale pro-homotopy type?

    • CommentRowNumber18.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 14th 2019
    • (edited Jun 14th 2019)

    I was trying to figure out how the different ’pro-’s relate. So I take it the pro- in proadjoint is due the appearance of pro-objects. But I never wondered why the pro- in profunctor. No explanation is given there, but do we see from pro-left adjoint signs of a connection between these in that there is a profunctor factoring through pro-objects?

    • CommentRowNumber19.
    • CommentAuthorDavidRoberts
    • CommentTimeJun 14th 2019

    @David C since profunctors were also given names like distributors, bimodules etc, they aren’t obviously related to pro-objects.

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeJun 14th 2019

    The only choice of terminology worse then “profunctor” is “anafunctor”.

    • CommentRowNumber21.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 14th 2019

    I started out closer to the other end ’obviously unrelated’. And that seems right from Mike’s comment:

    Am I the only one who minds the clash of ‘profunctor’ with pro-object?

    • CommentRowNumber22.
    • CommentAuthorMike Shulman
    • CommentTimeJun 15th 2019

    Yes, “profunctor” is unrelated to “pro-object”. Unfortunately I still prefer “profunctor” to “distributor” and “bimodule”.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)