nForum - Discussion Feed (symmetric algebra) 2023-02-04T14:43:30+00:00 https://nforum.ncatlab.org/ Lussumo Vanilla & Feed Publisher J-B Vienney comments on "symmetric algebra" (104822) https://nforum.ncatlab.org/discussion/14853/?Focus=104822#Comment_104822 2022-11-23T14:27:35+00:00 2023-02-04T14:43:30+00:00 J-B Vienney https://nforum.ncatlab.org/account/3240/ Finally almost succeeded to prove this: symmetric powers in a symmetric monoidal &Qopf; +\mathbb{Q}^{+}-linear category are characterized among the countable families of objects as forming a ...

Finally almost succeeded to prove this: symmetric powers in a symmetric monoidal $\mathbb{Q}^{+}$-linear category are characterized among the countable families of objects as forming a special connected graded quasi-bialgebra. Hope to add the reference soon.

]]>
J-B Vienney comments on "symmetric algebra" (104688) https://nforum.ncatlab.org/discussion/14853/?Focus=104688#Comment_104688 2022-11-19T20:42:24+00:00 2023-02-04T14:43:30+00:00 J-B Vienney https://nforum.ncatlab.org/account/3240/ Added that permutations &sigma;:A &otimes;n&rightarrow;A &otimes;\sigma:A^{\otimes n} \rightarrow A^{\otimes} are defined in the entry symmetric monoidal category diff, v21, ...

Added that permutations $\sigma:A^{\otimes n} \rightarrow A^{\otimes}$ are defined in the entry symmetric monoidal category

]]>
J-B Vienney comments on "symmetric algebra" (101916) https://nforum.ncatlab.org/discussion/14853/?Focus=101916#Comment_101916 2022-08-13T22:15:11+00:00 2023-02-04T14:43:30+00:00 J-B Vienney https://nforum.ncatlab.org/account/3240/ Explained more generaly the construction of the symmetric algebra in a CMon-enriched symmetric monoidal category. diff, v17, current

Explained more generaly the construction of the symmetric algebra in a CMon-enriched symmetric monoidal category.

]]>
J-B Vienney comments on "symmetric algebra" (101475) https://nforum.ncatlab.org/discussion/14853/?Focus=101475#Comment_101475 2022-07-28T22:59:43+00:00 2023-02-04T14:43:30+00:00 J-B Vienney https://nforum.ncatlab.org/account/3240/ A few words and an hyperlink to a page where I will put my conjectural characterization of symmetric powers in symmetric monoidal categories enriched over modules over a &Qopf; ...

A few words and an hyperlink to a page where I will put my conjectural characterization of symmetric powers in symmetric monoidal categories enriched over modules over a $\mathbb{Q}^{+}$-algebra.

]]>