nForum - Discussion Feed (homotopy groups of spheres) 2020-10-29T04:47:27-04:00 https://nforum.ncatlab.org/ Lussumo Vanilla & Feed Publisher Urs comments on "homotopy groups of spheres" (43319) https://nforum.ncatlab.org/discussion/4913/?Focus=43319#Comment_43319 2013-11-18T12:47:15-05:00 2020-10-29T04:47:27-04:00 Urs https://nforum.ncatlab.org/account/4/ added p-component tables stolen from Allen Hatcher’s website, and added an example for how to read them

added p-component tables stolen from Allen Hatcher’s website, and added an example for how to read them

]]>
Urs comments on "homotopy groups of spheres" (39634) https://nforum.ncatlab.org/discussion/4913/?Focus=39634#Comment_39634 2013-05-07T18:36:50-04:00 2020-10-29T04:47:27-04:00 Urs https://nforum.ncatlab.org/account/4/ added to homotopy groups of spheres the table k=k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 &ctdot;\cdots &pi; k(&Sopf;)=\pi_k(\mathbb{S}) = ...

added to homotopy groups of spheres the table

$k =$ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 $\cdots$
$\pi_k(\mathbb{S}) =$ $\mathbb{Z}$ $\mathbb{Z}_2$ $\mathbb{Z}_2$ $\mathbb{Z}_{24}$ $0$ $0$ $\mathbb{Z}_2$ $\mathbb{Z}_{240}$ $(\mathbb{Z}_2)^2$ $(\mathbb{Z}_2)^3$ $\mathbb{Z}_6$ $\mathbb{Z}_{504}$ $0$ $\mathbb{Z}_3$ $(\mathbb{Z}_2)^2$ $\mathbb{Z}_{480} \oplus \mathbb{Z}_2$
]]>