nForum - Discussion Feed (Dedekind eta function) 2022-01-25T17:22:11-05:00 https://nforum.ncatlab.org/ Lussumo Vanilla & Feed Publisher Urs comments on "Dedekind eta function" (49400) https://nforum.ncatlab.org/discussion/6201/?Focus=49400#Comment_49400 2014-08-28T11:49:25-04:00 2022-01-25T17:22:11-05:00 Urs https://nforum.ncatlab.org/account/4/ added the following story to the Properties-section of Dedekind eta function and also to the Examples-section of functional determinant and zeta function of an elliptic differential operator: For ...

added the following story to the Properties-section of Dedekind eta function and also to the Examples-section of functional determinant and zeta function of an elliptic differential operator:

For $E = \mathbb{C}/(\mathbb{Z}\oplus \tau \mathbb{Z})$ a complex torus (complex elliptic curve) equipped with its standard flat Riemannian metric, then the zeta function of the corresponding Laplace operator $\Delta$ is

$\zeta_{\Delta} = (2\pi)^{-2 s} E(s) \coloneqq (2\pi)^{-2 s} \underset{(k,l)\in \mathbb{Z}\times\mathbb{Z}-(0,0)}{\sum} \frac{1}{{\vert k +\tau l\vert}^{2s}} \,.$

The corresponding functional determinant is

$\exp( E^\prime(0) ) = (Im \tau)^2 {\vert \eta(\tau)\vert}^4 \,,$

where $\eta$ is the Dedekind eta function.

]]>