at *Atiyah Lie groupoid* was this old query box discussion, which hereby I am moving from there to here:

+– {: .query} What is all of this $diag$ stuff? I don't understand either $(P \times P)/_{diag} G$ or $(P_x \times P_x)_{diag} G$. —Toby

David Roberts: It’s to do with the diagonal action of $G$ on $P\times P$ as opposed to the antidiagonal (if $G$ is abelian) or the action on only one factor. I agree that it’s a bad notation.

*Toby*: How well do you think it works now, with the notation suppressed and a note added in words? (For what it's worth, the diagonal action seems to me the only obvious thing to do here, although admittedly the others that you mention do exist.)

*Todd*: I personally believe it works well. A small note is that this construction can also be regarded as a tensor product, regarding the first factor $P$ as a right $G$-module and the second a left module, where the actions are related by $g p = p g^{-1}$.

*Toby*: H'm, maybe we should write diagonal action if there's something interesting to say about it.
=–