Every category – indeed, every simplicial set – admits a homotopy final functor into it out of a Reedy category, namely its category of simplices (HTT 4.2.3.14). This makes me wonder: can every $(\infty,1)$-topos be presented as a localization of an $(\infty,1)$-topos of presheaves on a Reedy category?

]]>In another thread I came up with a definition of a local isomorphism in a site, working from the definition of a local homeomorphism/diffeomorphism in Top/Diff respectively (with the open cover pretopology in both cases). Then I find that there is a page local isomorphism talking about maps in presheaf categories: such a map is a local isomorphism if becomes an isomorphism on applying the sheafification functor $PSh(S) \to Sh(S,J)$. To quote my definition again

Definition:Let (C,J) be a site (J a pretopology). A map $f:a \to b$ is a J-local isomorphism if there are covering families $(v_i \to b)$ and $(u_j \to a)$ such that for each $u_j$ the restriction $f|u_j$ is an isomorphism onto some $v_i$.

I don’t claim, in the time I have available, to understand the implications of the definition at local isomorphism. I just wonder how it relates to concrete notions like local homeomorphisms (let us work with Top and open covers as covering families). Is a local homeomorphism, after applying Yoneda, a local isomorphism? Does a local isomorphism in the image of Yoneda come from a local homeomorphism? I suspect the answer is yes. Now for the biggie: can a local isomorphism be characterised in terms as basic as my definition as quoted? With my definition one avoids dealing with functor categories (and so size issues, to some extent: $[Top^{op},Set]$ is very big), so if they are equivalent, I’d like to put this somewhere.

Obviously we can take the site in my definition to be a presheaf category with the canonical pretopology or something, and potentially recover the definition at local isomorphism, but for the ease of connecting with geometric ideas, I prefer something simpler.

Any thoughts?

]]>