Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal modal-logic model model-category-theory monads monoidal monoidal-category-theory morphism motives motivic-cohomology nforum nlab noncommutative noncommutative-geometry number number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 25th 2019

    Added some criteria for spatiality.

    diff, v8, current

    • CommentRowNumber2.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 22nd 2020

    Exactly where in the literature does the term “topological locale” occur?

    Johnstone (Stone Spaces, Sketches of the Elephant) and Picado-Pultr both use “spatial locale”, and “topological locale” is never mentioned in their books at all.

    diff, v9, current

    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeMay 22nd 2020

    Don’t recall ever seeing it. Probably should be renamed “spatial locale”.

    • CommentRowNumber4.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 22nd 2020

    Renamed. Preserved the redirects.

    diff, v10, current

    • CommentRowNumber5.
    • CommentAuthorMike Shulman
    • CommentTimeMay 24th 2020

    Hang on, I think there was a reason for calling it “topological locale” even if that term doesn’t appear elsewhere in the literature. The point is that according to a broad perspective, a locale is itself already a kind of space. The term “spatial locale” assumes that “space” means “topological space”, but that’s often an unwarranted assumption.

    • CommentRowNumber6.
    • CommentAuthorTodd_Trimble
    • CommentTimeMay 24th 2020

    Are you saying it should be titled “topological locale” after all?

    As far as I know, there is never any question that “spatial locale” means “topological spatial locale” – that’s how everyone uses the term – so how could it be an unwarranted assumption?

    • CommentRowNumber7.
    • CommentAuthorMike Shulman
    • CommentTimeMay 24th 2020

    I’m not saying there’s potential confusion in practice, just that the term clashes with our general use of space on the nLab. The previous discussion is here. I’m fine with renaming the page (though Toby might object), but it might be worth adding a remark on terminology.

    • CommentRowNumber8.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 24th 2020
    • (edited May 24th 2020)

    We already have a whole section on terminology in the article.

    “Topological X” very consistently refers to an X-object in the category of topological spaces. Topological group, topological ring, topological vector space. Frames are also algebraic structures.

    Also, “topological locale” suggests that these particular locales have more to do with topology or topological spaces than the other locales, which is not true.

    I agree that “spatial locale” is bad terminology and something like “pointful locale” or “sober locale” (but definitely not “topological locale”) would be much better.

    However, I would very strongly argue that nLab should stick to established terminology where it exists and not use some made-up terms, since the latter make it very difficult to follow up with a literature search after reading some nLab article.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeMay 24th 2020

    The term “locale with enough points” would match the terminology and intent used in the entry and is used in standard texts as well as in current discussion (according to a quick Google search)

    • CommentRowNumber10.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 24th 2020

    Re #9: Yes, and this term is already mentioned in the article. It is introduced by Johnstone in “Stone spaces”.

    • CommentRowNumber11.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 24th 2020

    Deleted duplicate redirects.

    Why do “locale of opens” and “locale of open subspaces” redirect here?!

    diff, v11, current

    • CommentRowNumber12.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 24th 2020

    Deleted duplicate redirects.

    Why do “locale of opens” and “locale of open subspaces” redirect here?!

    diff, v12, current

    • CommentRowNumber13.
    • CommentAuthorDmitri Pavlov
    • CommentTimeMay 24th 2020

    Deleted duplicate redirects.

    Why do “locale of opens” and “locale of open subspaces” redirect here?!

    diff, v13, current

    • CommentRowNumber14.
    • CommentAuthorMike Shulman
    • CommentTimeMay 24th 2020

    Why do “locale of opens” and “locale of open subspaces” redirect here?!

    See the old discussion I linked in #7.

    • CommentRowNumber15.
    • CommentAuthorMike Shulman
    • CommentTimeMay 24th 2020

    I like “locale with enough points” as a name for the page (with “spatial locale” mentioned prominently as a standard terminology at the top of the page, and of course as a redirect).

    • CommentRowNumber16.
    • CommentAuthormartinescardo
    • CommentTimeMay 31st 2020

    A problem with the terminology “topological locale” is that it clashes with Isbell’s notion of “topological topology” from his paper “function spaces and adjoints” (https://www.jstor.org/stable/24491137). According to this, a topological frame would be a frame equipped with a topology making the frame operations continuous.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)