Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeAug 23rd 2020

    Created page with idea and the only extant references I know of.

    v1, current

    • CommentRowNumber2.
    • CommentAuthorvarkor
    • CommentTimeOct 25th 2022

    Add a reference to Burroni’s D-categories.

    diff, v2, current

    • CommentRowNumber3.
    • CommentAuthorvarkor
    • CommentTimeDec 2nd 2023
    • (edited Dec 2nd 2023)

    There is a joint generalisation of the setting of Koslowski and that of structured cospans (or rather structured spans): instead of specifying two monads SS and TT, one specifies endofunctors SS, TT, UU, VV such that UTVSUT \cong VS, along with the distributive laws necessary to express the composite of two (T,S)(T, S)-spans by applying UU to the left span and VV to the right span and taking a pullback. Considering monads in the resulting double category (or, if we don’t require pullbacks, “co-virtual double category”) of spans gives rise to a notion of generalised polycategory that appears to capture some interesting examples not captured by existing frameworks.