Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 28th 2010
    • (edited Oct 16th 2012)

    added to the Properties-section of reflective (infinity,1)-subcategory the statement and detailed proof of the fact that reflective (oo,1)-subcategories are precisely the full subcategories on local objects.

    This proof is really not specific to (oo,1)-categories and parallels a corresponding proof for 1-categories essentially verbatim. A similar 1-categorical proof I had once typed into geometric embedding. I should really copy either one of these versions to reflective subcategory.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 28th 2010

    further detailed proofs of Properties of reflective (infinity,1)-subcategories.

    This is actually a nice playground for using some of the machinery of adjoint oo-functors etc.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeApr 28th 2010

    more Examples

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2010
    • (edited Apr 29th 2010)

    I wanted to type out the details of the proof of the localization lemma which says, effectively, that given a “strongly saturated class” of morphisms SS, the localization at it is reflective.

    I understand this for ordinary categories and SS a calculus of fractions. I think I typed that out once at geometric embedding.

    But here the HTT-proof (5.5.5.14) with its lemmas is rather more demanding. I thought I could get it under control for the entry, but it has resisted that attempt so far…

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMay 4th 2010

    I have now finally essentially completed the full discussion of the detailed proof of the localization lemma (HTT 5.5.5.14).

    In HTT, towards the end of the proof there are plenty of typos in that the symbols used get mixed up and are renamed without mentioning. Looks like the result of a new version of the writeup overwriting an older version. Now, I have tried to fix these typos. But also, I had the funny idea to invent my own symbols altogether. And with some probability I introduced typos myself, of course…

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeMay 4th 2010

    … and using that, finally completed spelling out the proof of the localization proposition itself.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeMay 4th 2010

    P.S. there is the cache bug at work. My new material is at reflective sub-(infinity,1)-category.

    If instead you go to reflective (infinity,1)-subcategory you see still the old version, unfortunately, instead of being redirected.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeMay 12th 2010
    • (edited May 12th 2010)
    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeMay 19th 2010

    I spelled out more (supposedly: all) details in the proof at Exact localizations of the theorem that says that a reflector is exact precisely if the collection of morphisms that it inverts is stable under pullback.

    The proof applies verbatim to the 1-categorical setup, too. Maybe eventually I should copy it over to reflective subcategory or so. But also conversely, there should be more classical theory being relevant here.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeMay 24th 2010

    Dave Cardechi kindly fixed the sentence (which was wrong and due to me) leading up to the theorem about characterizations of accessible localizations at reflective sub-(infinity,1)-category.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeOct 16th 2012

    I created at reflective sub-(infinity,1)-category a new subsection Extra conditions to which I moved the previously existing Exact localizations and to which I added a new subsection Accessible reflective subcategories.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeDec 4th 2012

    added a paragraph Model category presentation (mainly serving as a pointer to the more detailed discussion at Bousfield localization of model categories, but such a pointer was missing).

    • CommentRowNumber13.
    • CommentAuthorMarc Hoyois
    • CommentTimeDec 4th 2012

    Proposition 9, which reproduces Prop. 6.2.1.2 from HTT, was removed from the electronic version of the book. I guess there must be an error in the proof.

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeDec 4th 2012

    Right, now that you say this I remember the discussion about this point. Need to do something about the entry…

    • CommentRowNumber15.
    • CommentAuthorMarc Hoyois
    • CommentTimeDec 31st 2012

    Speaking of which, I recently tried to read the proof of the new Proposition 6.2.1.2 in HTT, but I fail to understand even the first paragraph. Am I missing something or is the claim “we can assume that X κX^\kappa is stable under pullbacks” bogus?

    • CommentRowNumber16.
    • CommentAuthorMike Shulman
    • CommentTimeJan 2nd 2013

    Hmm… I also don’t see why it should be true, or how the commutation of pullbacks and filtered colimits helps. And the next claim that we can also assume XX is κ\kappa-accessible also seems to me to require justification, since in general, κλ\kappa\le\lambda isn’t sufficient for κ\kappa-accessible to imply λ\lambda-accessible.

    • CommentRowNumber17.
    • CommentAuthorMarc Hoyois
    • CommentTimeFeb 5th 2013

    I think this first paragraph can simply be replaced by an application of Proposition 5.4.7.4:

    Let 𝒞\mathcal{C} be a κ\kappa-accessible \infty-category and let τκ\tau\gg\kappa be an uncountable regular cardinal such that 𝒞 κ\mathcal{C}^\kappa is essentially τ\tau-small. Then the full subcategory 𝒞 τ𝒞\mathcal{C}^\tau\subseteq \mathcal{C} is stable under all κ\kappa-small limits which exist in 𝒞\mathcal{C}.

    (Note that the relation τκ\tau\gg\kappa implies that 𝒞\mathcal{C} is τ\tau-accessible.) This does not use that the formation of pullbacks commutes with filtered colimits (but this is still used later in the proof of 6.2.1.2).

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeFeb 5th 2013

    Marc, thanks for pointing this out. Maybe once you think this has been patched, might you have the time to briefly edit the nLab entry accordingly?

    • CommentRowNumber19.
    • CommentAuthorMike Shulman
    • CommentTimeFeb 5th 2013

    That sounds plausible to me. Maybe you should contact Lurie?

    • CommentRowNumber20.
    • CommentAuthorMarc Hoyois
    • CommentTimeFeb 7th 2013

    @Urs: Will do asap. The page on (∞,1)-sheaves also needs to be updated: the proof of 6.2.2.7 in HTT was completely changed in the electronic version, since it relied on the flawed Prop. 6.2.1.2. The new proof proceeds by explicitly defining the sheafification functor using transfinite recursion.

    @Mike: Done! I took the opportunity to mention that half the proof of Prop 7.2.1.10 is missing.

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeFeb 7th 2013

    Thanks, Marc! I am sure glad to know that somebody like you is looking into sorting these things out.

    • CommentRowNumber22.
    • CommentAuthorMarc Hoyois
    • CommentTimeFeb 9th 2013

    OK, I think I’ve straightened most things out. I’ve written a sketch of proof that sheafification is left exact. I’d appreciate feedback from experts. One part of the proof I’m still not sure how to prove in details: the fact that the functor Match(U,)Match(U,-) is idempotent. I can prove it by hand for presheaves of sets, but I don’t know how to make a categorical enough argument that would work here. Lurie says this is a “simple cofinality argument” in Remark 6.2.2.15.

    Other than that I’ve replaced the flawed Proposition 9 by the new Prop. 6.2.1.2 in HTT (which is quite weaker), and I’ve fixed references to that result at topological localization.

    • CommentRowNumber23.
    • CommentAuthorMarc Hoyois
    • CommentTimeFeb 9th 2013

    I see now that the fact that Match(U,)Match(U,-) is idempotent is really obvious! It’s just that Match(U,G)(u)=G(u)Match(U,G)(u)=G(u) if uUu\in U, because u *Uu^\ast U has an initial object…