Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeAug 26th 2022

    moving the following ancient query box out of the entry:


    +– {: .query} What about the ’or’ of parental threat? Consider the logician parent who says “Come here or I’ll smack you” to his child and smacks even after obedience as they believe in the inclusive ’or’. -David

    That's no different from ’If you don't come here, then I'll smack you.’, which also suggests (but does not state) the converse. And in fact, no parent, logician or otherwise, is actually making the promise implied by the ¬(pq)\neg(p \wedge q) clause; if the child comes to such a parent and then kicks the parent in the shin, then the parent will still smack the child. Instead, if you want to make that promise, then you say ’If you come here, then I won't smack you.’ explicitly. This has a very different tenor (unless you say it in a wink-nudge mafia kind of way), as it's a promise rather than a threat. (I know, it's only a promise, which is still different in tenor than a statement that is both promise and threat, as an exclusive disjunction would be. But I still hold that your statement is only a threat.) Note that a logician child who believes the parent's literal expression would still choose to come if avoiding smacking is the highest priority; but the reason is that refusal guarantees a smack, not that obedience necessarily avoids it. That is why the wise child also throws in a contrite expression and an oral apology, to improve the odds. —Toby

    I see there’s a literature on the subject including “The Myth of the Exclusive ’Or’” (Mind, 80 (317), 116–121). —David

    Also: I argued above that the meaning of ’Come here or I'll smack you’ must be weaker than exclusive disjunction, since the parent will smack the child anyway under some circumstances. However, I agree that it is stronger than inclusive disjunction, but that is because we may go beyond the literal meaning of the words and apply a Gricean implicature. To be specific, if the parent intends to smack the child regardless, then the parent should say ’I'll smack you’ by the Maxim of Quantity, but the parent in fact said something more wordy. Thus we conclude that the parent does not intend to smack the child if the child comes, without ruling out the possibility that the parent will still smack the child for some other reason, as yet unanticipated. —Toby =–


    diff, v16, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeOct 26th 2022

    added (here) graphics showing the description of XOR as a logic gate

    (same graphics as now at CNOT)

    diff, v17, current

  1. added section about exclusive disjunctions in dependent type theory

    Anonymouse

    diff, v20, current