Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty book bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex-geometry computable-mathematics computer-science constructive constructive-mathematics cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorzskoda
    • CommentTimeJul 28th 2010

    Many additions and changes to Leibniz algebra. The purpose is to outline that the (co)homology and abelian and even nonabelian extensions of Leibniz algebras follow the same pattern as Lie algebras. One of the historical motivations was that the Lie algebra homology of matrices which lead Tsygan to the discovery of the (the parallel discovery by Connes was just a stroke of genius without an apparent calculational need) cyclic homology. Now, if one does the Leibniz homology instead then one is supposedly lead the same way toward the Leibniz homology (for me there are other motivations for Leibniz algebras, including the business of double derivations relevant for the study of integrable systems).

    Matija and I have a proposal how to proceed toward candidates for Leibniz groups, that is an integration theory. But the proposal is going indirectly through an algebraic geometry of Lie algebras in Loday-Pirashvili category. Maybe Urs will come up with another path if it drags his interest.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeJul 28th 2010

    So with a notion of Chevalley-Eilenberg algebra for Leinniz-algebras, one should do the following:

    Dmitry Roytenberg has that notion of hemistrict Lie 2-algebra modeled on Leibniz algebras. There should be a notion of “hemistrict” L L_\infty-algebra.

    Ordinary L L_\infty-algebras (of finite type) are, as we know, dually the same as semifree graded-commutative dgas, their CE-algebras.

    So a natural question is: what characterizes CE-algebras of “hemistrict” L L_\infty-algebras, Leibniz type.

    It seems the answer should be: dg-algebras whose underlying graded-commutative algebra is not quite free, but has a nontrivial binary piece. Would be good to relate this to whatever the people cited in the Leinbiz algebra enty tought about.

    • CommentRowNumber3.
    • CommentAuthorzskoda
    • CommentTimeJul 28th 2010
    • (edited Jul 28th 2010)

    I am not sure now any more. I mean I did not write the answer to your main question as I am not sure. I mean there is the CE chain complex anc CE cochain complex in Leibniz algebra case, which is evident from the formulas. Mainly we have tensor product instead of exterior power. Now, I am not sure about the algebra structure which you enthusiatically asked about. Now if my noise about Koszul operad makes any sense than it should be a algebra over a dual Leibniz operad, understood as a dg-operad, that Koszul dual is studied in the Loday’s world. But need to get closer to the subject, I have spent most of my time in Loday-Pirashvili category instead of the original category of Leibniz algebras where I am not yet comfortable as in the LP category.

    The dual Leibniz algebra (in VecVec) is a nonassociative algebra with a product satisfying

    (xy)z=x(zy+yz). (xy)z = x(zy + yz).
    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeJul 28th 2010

    Could you enter the link (I will go for a bus in few minutes) to the appropriate Roytenberg’s paper somewhere in the entry Leibniz algebra ? I have added a section on dual Leibniz algebra.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)