Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
In gluing categories from localizations (zoranskoda) the main section
From a family of localizations to a comonad
is fully rewritten in improved notation. In other way, it is explained better how to get a comonad from a cover of a category by not necessarily compatible flat localizations. This generalizes the Sweedler's coring to relative situations. Now from such data one can make a two category, which I will explain in few days.
This is a preliminary to something I am writing at the moment namely to explain in such terms actions of comonads and monoidal categories on such descent categories. This part will be analogous to description of equivariant maps among G-manifolds in pairs of local charts, but because of the distributive laws with coherences, the thing complicates.
In fact, because the whole text is part of a long nlab entry in change let me copy here the new inserted section. The very construction in fact does not need flat localization, but a cover of a cartesian category by any family of flat functors (if it is infinite one requires in addition commuting with products of the same size, which in turn are also supposed to exist). Here is the text (for some reason the formula for did not render, something with -symbols (until I added this remark!), even after cleaning it, while it does in nlab entry!):
By a flat localization (functor) we will mean an exact additive functor having a fully faithful right adjoint . The composition is then often denoted by . A family , of functors with the same domain is conservative if is invertible for all only if is invertible. A flat cover of an abelian category is by definition a conservative family of flat functors .
Localization functors typically do not mutually commute. Namely, given a family of flat localizations , , the functors and for are in general not isomorphic. If the family is a cover then define the product category and the functor , where the notation denotes the ordered -tuple in . If has products of families of objects, then has a right adjoint given by . Indeed,
The unit of the adjunction is the map induced from the units , by the universality of Cartesian product in , namely . The counit has the components given by the compositions
where in the first functor the projections for the Cartesian product are used.
Denote ; then is the comonad on induced by the adjunction , where for each the component of the comultiplication is more explicitly the map
Again, if each commutes with -products then the products can be placed in front: $$
There is a comparison functor
under the appropriate (Beck comonadicity criteria) conditions is an equivalence, with the (quasi)inverse mapping sending an -comodule , into the equalizer of morphisms and in , thus identifying with the Eilenberg-Moore category of comodules for the comonad .
1 to 2 of 2