Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 26th 2010

    In response to an email sent to Urs by Andrew Marshall, a slight amendment to good open cover was made in the proof that paracompact manifolds admit good open covers.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeOct 13th 2010
    • (edited Oct 13th 2010)

    I invested some energy into the proof of the refined statement at good open cover: that every paracompact manifold has an open cover such that every finite non-empty intersection is diffeomorphic to an n\mathbb{R}^n.

    While working on this, I was in contact with colleagues, some of which previously doubted that there is a proof, others told me I am silly to invest any time into such a classical statement.

    As far as I can see, the statement is a typical folk theorem a full proof of which was not really written down.

    Notice that the statement appears as theorem 5.1 in Bott, Tu Differential forms in algebraic topology ! But the proof given there is not complete either. I added more comments on that and more pointers to the literature in the References-section at ball.

    But I think the proof that the nLab entry now gives is complete. But try to poke holes into it.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeOct 23rd 2013

    at good open cover I have made the concept of “differentiably good open cover” more explicit by giving it its own definition-paragraph and cross-linking a bit with the relevant propositions

    • CommentRowNumber4.
    • CommentAuthorDavidRoberts
    • CommentTimeOct 23rd 2013
    • (edited Oct 23rd 2013)

    Just out of curiosity, how many differentiably good open covers of non-contractible manifolds have people seen ’in the wild’, written down with coordinates? I know of the 1-sphere…

    • CommentRowNumber5.
    • CommentAuthorColin Tan
    • CommentTimeJul 17th 2014
    Other than some small edits, I added a section on refining covers. Made the claim that "Each differentially good cover has a unique smallest refinement to a differentially good cover which is closed under intersection".
    • CommentRowNumber6.
    • CommentAuthorColin Tan
    • CommentTimeJul 19th 2014

    Given that (good) covers are often used for defining Grothendieck topologies, I would like to define two covers 𝒞{\mathcal{C}} and 𝒟\mathcal{D} of a space XX to be “weakly equivalent” if there exists a set isomorphism GluedPlots(𝒞,X)GluedPlots(𝒟,X){\mathrm{GluedPlots}}({\mathcal{C}},X) \simeq {\mathrm{GluedPlots}}({\mathcal{D}},X). For the strong concept, say that a cover 𝒞{\mathcal{C}} is “equivalent” 𝒟{\mathcal{D}} if one is a refinement of another. Probably, one can prove that two covers are weakly equivalent with they have a common refinement. Furthermore, any cover 𝒞{\mathcal{C}} can be refined to a cover 𝒞¯\overline{{\mathcal{C}}} which is closed under intersection, that is, if UU and VV are plots of XX in 𝒞¯\overline{{\mathcal{C}}}, then so is their intersect UVU\cap V. (This also makes sense in the “”good” setting.)

    The application of all this is that, to check if a presheaf is a sheaf, it suffices to check (that, for cc an object of the site, the canonical map from X(c)X(c) to GluedPlots(𝒞,X){\mathrm{GluedPlots}}({\mathcal{C}},X) is iso) only for good covers 𝒞{\mathcal{C}} which are closed under intersection.

    • CommentRowNumber7.
    • CommentAuthorTodd_Trimble
    • CommentTimeSep 20th 2015

    For a long time there was a statement at good open cover that CW complexes have them, and while I have no particular reason to doubt that, the attempt at proof before seemed inadequate, so I’ve made some alterations and pointed to the literature as best I could in lieu of a proof.

    • CommentRowNumber8.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 24th 2019

    Added references to Demailly and Guillemin-Haine.

    diff, v45, current

    • CommentRowNumber9.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJan 6th 2021

    Added a reference to Gonnord-Tosel for star-shaped subsets.

    diff, v46, current

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeOct 28th 2021
    • (edited Oct 28th 2021)

    I just noticed that the References-section (here) spoke of referencing “proof” without saying proof of what. Checking the two references (from #8 above), I see that what is meant is proof of existence of what the entry calls differentiably good open covers of paracompact smooth manifolds.

    I have now made that explicit, and added pointer also to Thm. 5.1 in Bott & Tu (which glosses over details) and to Prop. A.1 in our arXiv:1011.4735.

    diff, v47, current

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeOct 28th 2021

    Also I see now that rev 38 had expanded the statement of Prop. 2.1 to a duplicate of the earlier material that is now Prop. 2.3.

    It’s good to give alternative proofs, but confusing to state the same proposition twice, for then the reader is left wondering if they are missing any implicit fine-print.

    But I leave it as is for the time being…

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeOct 29th 2021
    • (edited Oct 29th 2021)

    I have now tried to deal with the duplication introduced in rev 38 by re-working the section (“Existence on paracompact smooth manifolds” here) a little more.

    Now it

    • starts out with a remark (here) on the previous folklore and how it got eventually filled with proofs,

    • then states the Proposition, once,

    • and then gives the two proofs. (Not sure if these deserve to be two distinct proofs, as they are closely parallel. Of course it doesn’t hurt to say it twice, but if the idea is that the later proof fixes some gap left by the first, then let’s make that explicit.)

    I have also uploaded the pdf copy of that translation of the proof of Gonnord & Tosel and merged it together with the link to the MO discussion where it had emerged into a single reference item Gonnord & Tosel 1998.

    diff, v48, current

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeNov 11th 2021
    • (edited Nov 11th 2021)

    I expect that the argument of existence of differentiably good open covers readily generalizes to equivariant open covers of smooth GG-manfiolds, constructed via the equivariant triangulation theorem as in the proof of Thm. 2.11 in Yang 14 (there might be more canonical references that discuss this):

    These would be open covers invariant (as sets of subsets) under the GG-action, with the property that for all suitable subgroups HGH \subset G their restriction to HH fixed loci is a differentiably good open cover.

    This seems to be clear, as one just needs to recognize that the construction as in Yang 14, Thm. 2.11 produces on all fixed loci covers by star-shaped domains. But I haven’t gone through it with a fine comb yet. Maybe somebody knows a reference?

    • CommentRowNumber14.
    • CommentAuthorDmitri Pavlov
    • CommentTimeDec 29th 2023

    Added a related concept:

    • quasicompact quasiseparated scheme: schemes that admit a finite cover by affine opens such that the intersection of any two elements is itself covered by finitely many affine opens.

    diff, v49, current