Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMay 31st 2011
    • (edited Nov 4th 2013)

    quick fix at suspension: distinction between plain and reduced/based suspension. More should be said here, but not by me right now.

    • CommentRowNumber2.
    • CommentAuthorTobyBartels
    • CommentTimeMay 31st 2011
    • (edited May 31st 2011)

    But reduced suspension already has its own page (started by Tim Porter), which has been linked from suspension for some time. I’ve edited these pages and suspension object accordingly. (Please confirm that Tim’s reduced suspension is the same as yours.)

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeMay 31st 2011

    Thanks, Toby. I didn’t see this for some reason.

    • CommentRowNumber4.
    • CommentAuthorTobyBartels
    • CommentTimeJun 1st 2011

    I wrote:

    Please confirm that Tim’s reduced suspension is the same as yours.

    Well, you both said that it’s the smash product with the circle, so that should be fine (although you seem to care about it only up to homotopy).

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJun 1st 2011
    • (edited Jun 1st 2011)

    Sorry Toby, I had forgotten to reply to your request:

    yes, it seems what Tim had written is the standard construction, And, yes, I think that the concept of suspension is not too interesting up to homeomorphism, but natural in a context up to weak homotopy equivalence.

    On all these points the entry deserves further expansion. But not by me right now.

    • CommentRowNumber6.
    • CommentAuthorzskoda
    • CommentTimeJun 1st 2011

    Urs, I could agree about strong homotopy equivalence, not weak one. The suspension is important in shape theory for example, where going up to weak equivalence would be a disaster for some spaces.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJun 1st 2011

    Okay, I don’t really know about that. So maybe I should say strong homotopy equivalence .

    • CommentRowNumber8.
    • CommentAuthorTobyBartels
    • CommentTimeJun 1st 2011

    The suspension is useful up to homeomorphism, where it defines the continuous structure of spheres, and even up to diffeomorphism, where it defines the smooth structure of cubes. See the examples at suspension. (It seems that the spell checker in Firefox 4 knows “homeomorphism”, but not “diffeomorphism” yet).

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJun 2nd 2011

    The suspension is useful up to homeomorphism, where it defines the continuous structure of spheres, and even up to diffeomorphism, where it defines the smooth structure of cubes.

    Okay, but doesn’t the very term “suspension” for the construction that the explicit formulas are models for refer to the homotopy-theoretic interpretation? Doesn’t it refer to the shifting-up of homotopy groups? (I don’t actually know, maybe not, but that’s what I always thought.)

    • CommentRowNumber10.
    • CommentAuthorAndrew Stacey
    • CommentTimeJun 2nd 2011

    I think you mean “homology”. Suspension shifts homology but is more complicated on homotopy.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeJun 2nd 2011

    Right, I misspoke. Sorry.

    • CommentRowNumber12.
    • CommentAuthorjim_stasheff
    • CommentTimeJun 2nd 2011
    doesn't the very term "suspension" for the construction that the explicit formulas are models for refer to the homotopy-theoretic interpretation?

    I would say NO that would be revisionist history
    initially I think the term `suspension' was motivated by the picture
    the precise construction was useful in several ways

    it then spawn adjectival versions such as the suspension homomorphism in both homology and homotopy
    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeJun 2nd 2011

    Okay, I see.

    • CommentRowNumber14.
    • CommentAuthoradeelkh
    • CommentTimeMar 25th 2014
    • (edited Mar 25th 2014)

    Let C be a pointed symmetric monoidal model category. One can define suspension as the homotopy colimit of the diagram *X*\ast \leftarrow X \to \ast, as is done at suspension object, or as XS 1X \otimes S^1, where S 1S^1 is the suspension of S 0=**S^0 = \ast \sqcup \ast in the former sense. Are these the same?

    Maybe this only works in the case where C is the category of pointed objects in some cartesian model category, with the usual model structure and the smash product. In that case I think I have a proof, but it seems too easy…

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeMar 25th 2014

    So if the tensor is indeed the smash product and preserves hocolims, then it just follows directly, that’s probably what you have in mind.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)