Want to take part in these discussions? Sign in if you have an account, or apply for one below
Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.
created stub for E-k-operad
I think that the name should be E-k operad (which you already made a redirect); more generally, it should be ‘ operad’, not ‘-operad’. Compare: an ‘-ring’ is like a monoid but different, because it's been hit with this thing. But that's not what we have here; the operad is an operad, and it hasn't been hit with any thing; it is the thing.
Am I right?
I see, good point. I haven't thought much about this. But, right, it's the operad named , of course.
Have changed the page name now.
Should E-infinity operad redirect there too, or does it get its own page?
Eventually it should probably have its own page. Maybe at the moment it would be more convenient to have a redirect.
Also the E-1 operad aka Ass should eventually get its own page. And maybe E-2 and E-3. And E-oo. n and one-two-three-infinity. As with n-categories.
n and one-two-three-infinity. As with n-categories.
Now you know my next question:
Is there an operad?
I suppose that's the trivial operad. The terminal operad.
Now I foretell your next question...
I don't think it's really accurate to talk about the operad. I always thought that one talked about an operad, of which the little k-cubes operad is just the most common example. For instance, there is the little k-disks operad. And in the cases k=1 and there are lots more operads; for instance, the linear isometries operad is .
Right, i thought about that but then was being lazy. I need to polish the terminology. I might have been, as you may have noticed, under the influence of Lurie's latest. He writes specifically for the little cubes thingy.
I am not sure, what should be the pattern here? Is the blackboard-boldface to be read as indicating that little cubes are meant?
Far be it from me to claim to understand Lurie's notation and terminology. Peter May writes for the little n-cubes operad ( for "cubes"?).
1 to 11 of 11