Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorzskoda
    • CommentTimeAug 22nd 2012
    • (edited Aug 22nd 2012)

    I have this information from Vladimir Guletskii. Maybe somebody could post/advertise it on nCafe as well. The deadlines are really soon so it is an urgent information.

    The Department of Mathematical Sciences of the University of Liverpool has one EPSRC DTG studentship award for research leading to a PhD starting on 1 October 2012. Dr Jon Woolf proposes the following PhD research programme for this vacancy to work under his supervision:

    Directed homotopy theory and (infinity,1)-categories

    Directed homotopy theory studies spaces equipped with some notion of direction or ordering of points; there are several variants but the most relevant one for this project is locally pre-ordered spaces. These are spaces such that the points of each open subset are pre-ordered (suitably compatibly with the topology, and with the other local pre-orders). There are many natural examples: stratified spaces (points in higher codimension strata are deeper), space-time (ordered by causality), geometric simplices (points have the same ‘level’ as the highest vertex in the closure of the face in which they lie), and more generally geometric realisations of simplicial sets.

    The initial aim of this project is to study an analogue of Grothendieck’s homotopy hypothesis

    ‘homotopy-types are infinity-groupoids, i.e. (infinity,0)-categories’;

    namely that ‘directed homotopy types are (infinity,1)-categories’.

    (Here, by a directed homotopy type we mean a directed space up to equivalence under an undirected notion of homotopy. Working with directed homotopies is also interesting, but leads to a different theory.) To be more precise, the aim is to set up a model structure on the category of locally pre-ordered spaces which is Quillen equivalent, via directed analogues of the singular simplicial set and geometric realisation functors, to the Joyal model structure on simplicial sets. The fibrant objects of the latter are precisely the quasi-categories, i.e. the simplicial models of (infinity,1)-categories.

    The conjectural model structure on locally pre-ordered spaces should have a close connection with well-studied notions in the homotopy theory of stratified spaces (and from this it would derive much of its interest). In particular, the fibrant objects should include Quinn’s homotopically stratified sets, and for these weak equivalence should specialise to stratum-preserving homotopy equivalence.

    The Initial applications (CV and Personal Statement on Research) can be emailed to jonwoolf@liverpool.ac.uk

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeSep 4th 2012

    Let me remind you of this urgent entry if you know somebody interested.

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 4th 2012

    I posted it at the Cafe. I wonder if there’s an effect working here that I’ve seen in philosophy. It’s much easier to fill a postdoc with prescribed content than a PhD position.

    • CommentRowNumber4.
    • CommentAuthorzskoda
    • CommentTimeSep 4th 2012

    Great, thanx.