Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory kan lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology newpage noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeSep 8th 2012
    • (edited Sep 8th 2012)

    at principle of equivalence I have restructured the Examples-section: added new subsections in “In physics” on gauge transformations and on general covariance (just pointers so far, no text), and then I moved the section that used to be called “In quantum mechanics” to “Examples-In category theory” and renamed it to “In the definition of \dagger-categories” (for that is really what these paragraphs discuss, not any notion of equivalence in quantum mechanics, the application of \dagger-categories in that context notwithstanding)

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeSep 8th 2012
    • (edited Sep 8th 2012)

    And I move the “How to break equivalence-invariance” to the end. At least it should go after the “General definition”, I’d say.

    • CommentRowNumber3.
    • CommentAuthorDavid_Corfield
    • CommentTimeSep 9th 2012

    So general covariance is an example of the (mathematical) principle of equivalence. Remind me, how should I think of the (physical) principle of equivalence? I think somewhere you just said it’s a result of using Riemannian spaces. So the physical principle of equivalence is part of a precondition for the mathematical principle of equivalence to have as special case general covariance?

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeSep 9th 2012
    • (edited Sep 9th 2012)

    Remind me, how should I think of the (physical) principle of equivalence?

    I am claiming that the mathematical formalization of the “principle ofequivalence” in the theory of gravity is (or was, in the time when people actually referred to it):

    1. the infinitesimal neighbourhood of every point in spacetime is a vector space (the tangent space);

    2. the Levi-Civita connection can be taken (up to its gauge freedom) to vanish on that neighbourhood (not it’s derivative, though, hence not the curvature). This is the existence of “Riemann normal coordinates”.

    In conclusion: in first order approximation around any point, gravitational dynamics looks like dynamics in flat space.

    So that “principle of equivalence” is not so very close to the mathematical “principle of equivalence” as we have on that page. What we have on the page principle of equivalence however directly subsumes what in gravity is the principle of general covariance.

    But of course the relation is via those Riemann normal coordinates (or can be understood that way): the principle of general covariance says that if you see a field of gravity gg on spacetime Σ\Sigma, you may regard it as being equivalent to the field of gravity g˜f *g\tilde g \coloneqq f^* g for any diffeomorphism f:ΣΣf : \Sigma \to \Sigma. The statement of Riemann normal coordinates is that you can always find such a diffeomorphism such that at a given point f *gf^* g induces vanishing Levi-Civita connection at that point, hence proving that up to gauge equivalence the dynamics in the infinitesimal neighbourhood of that point is that of flat space.

    That’s how these things relate. Schematically we have implications

    principle of equivalence in mathematics \Rightarrow principle of general covariance \Rightarrow principle of equivalence in physics

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeSep 9th 2012

    I turned this into a quick note here. But need to quit now.

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeMar 7th 2018

    One day we should probably extract some text from that discussion at In the concept of †-categories. But for now, I added a link to this old MO discussion – Are dagger categories truly evil?.