Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeNov 7th 2013
    • (edited Nov 7th 2013)

    added some lines to differential algebraic K-theory

    also a stub Beilinson regulator

    • CommentRowNumber2.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 7th 2013

    So is MfdMfd going to be the category of choice when someone wants to refine a cohomology to a differential one? ’Just’ multiply the original site by it, and take \infty-stacks (perhaps with different values).

    Presumably along with this will come the super- and synthetic refinements. Is there any chance to infinitesimally extend SchSch by itself?

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeNov 7th 2013
    • (edited Nov 7th 2013)

    Yes, this is a thought is hard not to have here, that maybe cohesion modeled on manifolds and their slight variants is kind of canonical, and everything else is obtained by doing this over different base \infty-toposes.

    But one should be careful here. Just because this is maybe easiest to understand for “us” at this point in time, need not mean that this is canonical on more absolute ground. Let’s keep an open mind about this.

    Concerning the second question: schemes already involve infinitesimal thickening. It is this crucial observation of Grothendieck’s that spectra of nilpotent rings model infinitesimal spaces which Lawvere then meant to abstract away from the algebraic context by the axioms of synthetic differential geometry.

    • CommentRowNumber4.
    • CommentAuthorDavid_Corfield
    • CommentTimeNov 7th 2013

    So we might have had some infinitesimal cohesion already of \infty-stacks over SchSch relative to those over schemes for non-nilpotent rings.

    • CommentRowNumber5.
    • CommentAuthorzskoda
    • CommentTimeNov 7th 2013
    • (edited Nov 7th 2013)

    Concerning the second question: schemes already involve infinitesimal thickening. It is this crucial observation of Grothendieck’s that spectra of nilpotent rings model infinitesimal spaces

    I think one has to be careful with this formalization here. The datum for an infinitesimal thickening is implied by the data of an embedding of scheme. Say a diagonal in X× SXX\times_S X. But the diagonal with a thickening is not a scheme any more. It is rather a formal scheme; formal schemes themselves form a subcategory of the category of ind-schemes (ind-objects in the category of schemes). Similarly with formal spectra of complete local rings and more general topological rings (say pseudocompact rings).

    In our paper with Nikolai Durov, instead of CRing opCRing^{op}, he takes as a base “site” the opposite to the category of pairs (R,I)(R,I) where RR is a ring and II is a nilpotent ideal (later he looks at slice category over (k,0)(k,0) where kk is a ground field; in this category he find two different analogues of the ring of dual numbers, hence gets different kind of formal thickenings). In the corresponding category of presheaves he finds formal schemes as examples. He does not go into topologies to single out the subcategory of formal schemes but works with general presheaves and then with examples which are obviously formal schemes. This enables him to go beyond the classical case of very nice base rings for formal scheme theory.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeNov 7th 2013
    • (edited Nov 7th 2013)

    I should have said “formal scheme”, I guess. The point is that Grothendieck realized and/or amplified that it’s nilpotent elements in rings of functions that serve to model infinitesimal extension.

    (In a way this was clear ever since Leibniz’s differential caclulus and many experimental physicists do all their differentiation needs this way without ever having heard of Grothendieck, but I guess he was the one to establish the fact in the maths community conciousness.)

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeMay 20th 2014

    I have started to add some more genuine content to differential algebraic K-theory. But the entry remains rather skeletal and under construction for the moment.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)