Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry goodwillie-calculus graph graphs gravity group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory history homological homological-algebra homology homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory kan lie lie-theory limit limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology newpage noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
  1. Added to Dedekind cut a short remark on the ¬¬\neg\neg-stability of membership in the lower resp. the upper set of a Dedekind cut.

    • CommentRowNumber2.
    • CommentAuthorTobyBartels
    • CommentTimeJan 27th 2014

    Interesting! I didn't quite follow the last bit of your argument, so I rephrased it. (I also regularized the notation of RR vs UU and finagled a link to stable property.)

    • CommentRowNumber3.
    • CommentAuthorIngoBlechschmidt
    • CommentTimeJan 27th 2014
    • (edited Jan 27th 2014)

    Thanks for catching the typo and streamlining the argument! (For the record, my reasoning was as follows: Since bUb \in U, we have ¬¬(bU)\neg\neg(b \in U). Since ¬¬(bL)\neg\neg(b \in L) and ¬¬\neg\neg distributes over \wedge, we have ¬¬(bLbR)\neg\neg(b \in L \wedge b \in R). Since bLbRb \in L \wedge b \in R \Rightarrow \bot and ¬¬\neg\neg is monotone, we have ¬¬\neg\neg\bot, so \bot.)

    The almost-¬¬\neg\neg-stability can be helpful when proving the equivalence of Dedekind cuts with multi-valued Cauchy “sequences” (i.e. certain maps +P()\mathbb{Q}^+ \to P(\mathbb{Q})). Depending on one’s line of thought, of course, one can otherwise get stuck when trying to show that equivalent multi-valued Cauchy sequences define the same Dedekind cut.

  2. Added a short remark that equality of Dedekind cuts is ¬¬\neg\neg-stable.

    • CommentRowNumber5.
    • CommentAuthorDavidRoberts
    • CommentTimeJul 16th 2018

    Added Project Gutenberg link for Beman’s English translation of Continuity and irrational numbers

    diff, v20, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)