Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Discussion Tag Cloud

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2016
    • (edited Apr 15th 2016)

    I have created an entry model structure on topological sequential spectra.

    In parts this directly parallels the entry Bousfield-Friedlander model structure.

    But now I have spelled out full proof of the model structure and its cofibrant generation: here

    I did this by taking the more general proof that I had earlier spelled out at Model categories of diagram spectra, and specializing it to the case of sequential spectra.

    The effect of that is that those tedious technical lemmas about the maps of free spectra collapse to something simple, with the result that the actual proof may start right away with less preliminaries, which makes the writeup a bit more transparent. On the other hand, the neat thing is that apart from that analysis of the free spectra the proof is verbatim the same now for all cases (sequential, symmetric, orthogonal spectra and pre-excisive functors), so in the other entries it’ll be possible to turn this around and say: “after this analysis of the free symmetric/orthogonal spectra the proof of their model structure now follows verbatim as at model structure for topological sequential spectra”.

    As far as exposition and writeup goes, the only remaining “gap” I left is that at one point the proof invokes that Top Quillen */Top_{Quillen}^{\ast/} and hence [StdSpheres,Top Quillen */] proj[StdSpheres, Top_{Quillen}^{\ast/}]_{proj} is a topological model structure (this is used in the proof of this lemma ). I plan to spell that out, too. But not tonight.

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 22nd 2016
    • (edited Apr 22nd 2016)

    I have spelled out a proof (here) that the “fake suspension” on sequential spectra descends to an equivalence of the stable homotopy category with itself.

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeApr 22nd 2016
    • (edited Apr 22nd 2016)

    I have now spelled out the proof (here) that SeqSpec(Top) stableSeqSpec(Top)_{stable} is indeed a stable model category.

    The only step that I didn’t make fully explicit yet is the claim at one point that there is a Quillen equivalence between the stable model structure for ordinary sequential spectra with structure maps S 1X nX n+1S^1 \wedge X_n \to X_{n+1} and that of sequential spectra on “even graded sequences” with structure maps S 2XnX n+1S^2 \wedge X'n \to X'_{n+1}.

    (I have been following in outline the discussion in section 10.4 Local homotopy theory, trying to strip away all that is not necessary for just this statement. And I may be wrong but right now I feel like I also filled in some small things. For instance it seems to me right now that prop. 10.53 there shouldn’t claim a stable equivalence, but a zig-zag of those. In any case, the “proof” text after 10.53 seems to have been chopped off or left over from a copy-and-pasting operation. Anyway, staring at it it becomes clear what the idea is.)

    • CommentRowNumber4.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 22nd 2016

    That’s quite surprising! I figured with this whole course you were after some particular calculation, but haven’t yet got a good guess as to what it might be (aside from what we kinda discussed at IHES, the M5 charges).

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 23rd 2016

    That’s quite surprising!

    You may need to help me here: what is quite surprising?

    • CommentRowNumber6.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 23rd 2016

    The Quillen equivalence in your second para in #3

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeApr 23rd 2016
    • (edited Apr 23rd 2016)

    Ah, no, that shouldn’t be surprising. In different guise this is an ancient fact. For instance complex Thom spectra all appear as S 2S^2-spectra and are then turned into S 1S^1-spectra. The Quillen equivalence comes down to the fact that if you take an S 1S^1-spectrum first to its underlying S 2S^2-spectrum and then go back to an S 1S^1-spectrum this way, then the canonical comparison map is clearly an iso on stable homotopy groups, roughly because if we “eventually” reach a stable element, it does not matter whether we do so in steps of one or steps of two. Anyway, a proof of that equivalence (in more generality) is given in that section 10.4 of Local homotopy theory.

    • CommentRowNumber8.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 23rd 2016

    Oh, OK. I thought it was something to do with even spectra, like kuku.

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2016
    • (edited Apr 29th 2016)

    I have expanded the discussion of the stability of the model structure by spelling out full proof that not only is it stable, but it is indeed a stabilization of the model structure on topological spaces, culiminating in this corollary, which states that there is a diagram of Quillen adjunctions

    (Top cg */) Quillen ΩΣ (Top cg */) Quillen Σ Ω Σ Ω SeqSpec(Top cg) strict ΩΣ SeqSpec(Top cg) strict id id id id SeqSpec(Top cg) stable QΩΣ SeqSpec(Top cg) stable, \array{ (Top_{cg}^{\ast/})_{Quillen} & \underoverset{\underoverset{\Omega}{\bot}{\longrightarrow}}{\overset{\Sigma}{\longleftarrow}}{} & (Top^{\ast/}_{cg})_{Quillen} \\ {}^{\mathllap{\Sigma^\infty}}\downarrow \dashv \uparrow^{\mathrlap{\Omega^\infty}} && {}^{\mathllap{\Sigma^\infty}}\downarrow \dashv \uparrow^{\mathrlap{\Omega^\infty}} \\ SeqSpec(Top_{cg})_{strict} & \underoverset {\underset{\Omega}{\longrightarrow}} {\overset{\Sigma}{\longleftarrow}} {\bot} & SeqSpec(Top_{cg})_{strict} \\ {}^{\mathllap{id}}\downarrow \dashv \uparrow^{\mathrlap{id}} && {}^{\mathllap{id}}\downarrow \dashv \uparrow^{\mathrlap{id}} \\ SeqSpec(Top_{cg})_{stable} & \underoverset {\underset{\Omega}{\longrightarrow}} {\overset{\Sigma}{\longleftarrow}} {\simeq_{\mathrlap{Q}}} & SeqSpec(Top_{cg})_{stable} } \,,

    whose induced diagram of derived functors is of the form

    Ho(Top */) ΩΣ Ho(Top */) Σ Ω Σ Ω Ho(Spectra) ΩΣ Ho(Spectra) \array{ Ho(Top^{\ast/}) & \underoverset {\underset{\Omega}{\longrightarrow}} {\overset{\Sigma}{\longleftarrow}} {\bot} & Ho(Top^{\ast/}) \\ {}^{\mathllap{\Sigma^\infty}}\downarrow \dashv \uparrow^{\mathrlap{\Omega^\infty}} && {}^{\mathllap{\Sigma^\infty}}\downarrow \dashv \uparrow^{\mathrlap{\Omega^\infty}} \\ Ho(Spectra) & \underoverset {\underset{\Omega}{\longrightarrow}} {\overset{\Sigma}{\longleftarrow}} {\simeq} & Ho(Spectra) }

    with top and bottom the correct canonically defined adjunctions.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2016

    Is there a quick argument, not using higher category theoretic technology, that this is indeed the universal stabilization?

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeMay 17th 2016
    • (edited May 17th 2016)

    I have added statement and proof here that if a morphism of topological sequential spectra is a stable weak homotopy equivalences then it also is a stable equivalence (in that it induces isos by homming it into Omega-spectra in the homotopy category of the level model structure).

    I adapted the general proof from Model categories of diagram spectra, but breaking it down to the simple special case of sequential spectra and avoiding discussion of mapping spectra out of free spectra in favor of the familiar lim nΩ nX[n]\underset{\longrightarrow}{\lim}_n \Omega^n X[n]-construction that it comes down to in the sequential case.

    • CommentRowNumber12.
    • CommentAuthorUrs
    • CommentTimeMay 17th 2016
    • (edited May 17th 2016)

    In the section proving the stability of the stable model structure (here) I have spelled out the details of the adjunction between ordinary sequential spectra and “S 2S^2-spectra” that enter the main proof. (The statement which was found surprising in #6.)

    In fact one doesn’t need the full Quillen equivalence here. I gave a more lightweight proof. I am trying to see how far one gets with just the implication

    stableweakhomotopyequivalencestableequivalence stable \; weak \; homotopy \; equivalence \;\;\; \Rightarrow \;\;\; stable \; equivalence

    without using its converse (which fails for symmetric spectra). And to prove that the “alternative suspension” (which lends itself to proof of stability) is isomorphic in the stable homotopy category to the suspension induced by the standard cylinder, all one needs is the implication this way.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeMay 18th 2016

    I have now spelled out the proof, carefully, that the stable homotopy category is additive, here.

    • CommentRowNumber14.
    • CommentAuthorUrs
    • CommentTimeMay 18th 2016
    • (edited May 18th 2016)

    I have added statement and proof of the triangulated structure on the stable homotopy category (here).

    Then I added statement and proof of the long-in-both-directions homotopy (co-)fiber sequences of spectra, as a general statement from the triangulated category axioms here.

    Much of the latter should be moved over to triangulated category and only the specialization corollary kept at model structure on topological sequential spectra. I’ll do that reorganization later, after adding a bit more accompanying text to the lemmas here and there. But not today.

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeMay 26th 2016
    • (edited May 26th 2016)

    Due to the issue mentioned in another thread here, for the moment I have removed the writeup of the proof of the stable model structure on topological sequential spectra that followed MMSS 00.

    Instead I have replaced it now by writeup of the proof that uses the Bousfield-Friedlander theorem applied to the (correct) Omega-spectrification functor. This is now in the section

    The stable model structure.

    Of course, with that model structure in hand, we immediately prove that otherwise problematic step in the other proof (the “issue” from above). So maybe I’ll re-instantiate the previous proof after all, not as a proof of the model structure as such, but as a proof that it is cofibrantly generated.

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeMay 28th 2016

    I have typed in the remaining lemma and its proof for the statement in #15: Omega-spectrification of topological sequential spectra presrves homotopy pullback squares (here).

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeMay 28th 2016

    I have expanded the section proving the stability of the stable model structure (here). (The previous version didn’t actually prove the isomorphism between standard and “fake” suspension in the stable homotopy category, it just gave the idea.)

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeJun 7th 2016

    As anticipated in #15, after switching to the proof via Bousfield-Friedlander, I have re-installed a much simplified version of the previous proof, now as just a proof of cofibrant generation (here).

    I have also expanded various of the little proofs in the section that proves the additivity of the stable homotopy category, here.

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeJun 7th 2016
    • (edited Jun 7th 2016)

    I have now expanded also the section triangulated structure. Added a paragraph on the single non-trivial step in the proof of the octahedral axiom in the stable model category.

    I discovered a nice note by Andrew Hubery (here) in which a whole bunch of different formulations of the octahedral axiom are proven to be equivalent. One of them (“axiom B” in the note) manifestly axiomatizes just the existence of homotopy pushouts. That is really what one uses, explicitly or implicitly, when proving the octahedral axiom in a stable model category: homotopy pushouts and their pasting law.

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeJun 8th 2016

    I have added statement and proof that homotopy cofiber sequences of spectra coincide with homotopy fiber sequences (here).

    (Previously that section only had the statement that the “wrong way” long sequences exist, but not yet that they actually coincide with the respective dual sequences.)

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeJun 13th 2016

    I have included a graphics showing the 3d commuting cube pasting diagram that proves the octahedral axiom from the pasting law of homotopy pushouts. here.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)