Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry beauty bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor galois-theory gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeJun 8th 2017
    • (edited Jun 8th 2017)

    The cut rule for linear logic used to be stated as

    If ΓA\Gamma \vdash A and AΔA \vdash \Delta, then ΓΔ\Gamma \vdash \Delta.

    I don’t think this is general enough, so I corrected it to

    If ΓA,Φ\Gamma \vdash A, \Phi and Ψ,AΔ\Psi,A \vdash \Delta, then Ψ,ΓΔ,Φ\Psi,\Gamma \vdash \Delta,\Phi.

    • CommentRowNumber2.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 8th 2017

    No objection, but I guess it would depend on the precise rules. In MLL which has duals, if we have rules which allow us to derive

    ΓΣ,ΦΓ,Φ *Σ,Ψ,ΣΔΨΔ,Σ *\frac{\Gamma \vdash \Sigma,\Phi}{\Gamma, \Phi^\ast \vdash \Sigma}, \qquad \frac{\Psi, \Sigma \vdash \Delta}{\Psi \vdash \Delta, \Sigma^\ast}

    where Φ *\Phi^\ast is the list of duals of formulas of Φ\Phi, and A **=AA^{\ast\ast} = A, I thought we would be able to derive your more general cut rule from the more specific cut rule:

    ΓA,ΦΨ,AΔ Γ,Φ *AAΨ *,Δ Γ,Φ *Ψ *,Δ Ψ,ΓΔ,Φ \array{ \arrayopts{\rowlines{solid}} \Gamma \vdash A, \Phi\;\;\;\;\;\;\;\;\; \Psi, A \vdash \Delta \\ \Gamma, \Phi^\ast \vdash A \;\;\;\;\;\;\;\;\; A \vdash \Psi^\ast, \Delta \\ \Gamma, \Phi^\ast \vdash \Psi^\ast, \Delta \\ \Psi, \Gamma \vdash \Delta, \Phi }
    • CommentRowNumber3.
    • CommentAuthorMike Shulman
    • CommentTimeJun 8th 2017

    Yes, you’re right. But I think it’s better to formulate the rule in a way that remains correct in fragments without involutive negation.

    • CommentRowNumber4.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 8th 2017

    Understood (and agreed); I was just explaining the likely reason the original form was the way it was (I’m guessing I wrote that).

    • CommentRowNumber5.
    • CommentAuthorTobyBartels
    • CommentTimeSep 10th 2018

    Confirm that the game semantics presented here is the same as Blass's. (I still haven't actually read Blass 1992, yet, but I read a 1994 paper by Blass that summarizes the 1992 semantics.)

    diff, v80, current

    • CommentRowNumber6.
    • CommentAuthorBenMacAdam
    • CommentTimeMar 23rd 2019

    Added differential linear logic to variants, included a reference to the paper introducing differential categories.

    diff, v82, current

  1. Link to game semantics article

    Ammar Husain

    diff, v84, current

  2. Copycat example.

    Ammar Husain

    diff, v84, current

  3. Caires, Pfenning

    Ammar Husain

    diff, v85, current

    • CommentRowNumber10.
    • CommentAuthorMike Shulman
    • CommentTimeNov 12th 2019

    Added some redirects

    diff, v87, current

    • CommentRowNumber11.
    • CommentAuthorAdeleLopez
    • CommentTimeFeb 15th 2020

    fixing dead link

    diff, v89, current

    • CommentRowNumber12.
    • CommentAuthorTobyBartels
    • CommentTimeFeb 17th 2020

    Mention Mike's antithesis interpretation.

    diff, v90, current

    • CommentRowNumber13.
    • CommentAuthorMike Shulman
    • CommentTimeMar 12th 2020

    Thanks for adding that, Toby! I added a redirect for “antithesis interpretation” to this page, since you created a link to that from join. We could eventually have a separate page about it, but for now this is the best target of such a link.

    diff, v92, current

  4. I think the use of ’categorial semantics’, when the section talks about a ’categorical semantics’ was a typo. If it isn’t, it might be good to explain that there are schools of thought that prefer the adjective ’categorial’ to ’categorical’, and strongly so. Personally, I prefer ’categorical’, but some of my best friends insist on ’categorial’.

    Valeria de Paiva

    diff, v94, current

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeJan 18th 2021
    • (edited Jan 18th 2021)

    I do expect it was a typo. But it might still be good to explain issues with the terminology, either on this page or on a dedicated page!

    I feel that most usage of “categorical” in mathematics is, or originates in, a careless search for terminology that is really looking for “category theoretic”. Compare the analogous clear difference between “numerical” and “number theoretic”.

    • CommentRowNumber16.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 25th 2021

    It almost surely is not a typo – it’s Toby’s preferred word.

    • CommentRowNumber17.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJan 26th 2021
    • (edited Jan 26th 2021)

    Searching MathSciNet, “categorical” is more popular than “categorial” by an order of 20 (11822 vs 591 matches).

    Furthermore, “categorial” matches mostly philosophy, logic, and computer science, with almost no actual category theory papers.

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeJan 26th 2021
    • (edited Jan 26th 2021)

    Somebody please just add a discussion of terminology, conventions and issues to this entry – or better to categorical logic and then link to it from here.

    It sure must look like typos to any outside reader: There was 16 “categorical” vs 4 “categorial” before Valeria’s latest edit, some next to each other, notably there was

    1. Categorial semantics. We discuss the categorical semantics…

    I see from the edit history that the “categorial”s are Toby’s intentional ideosyncrasy. As per #15 I probably agree with the logic behind this, but if mathematical terminology were a matter of logic, most of it would be much different. The goal of an entry must be to communicate with the reader, not to irritate them.

    But if we had a decent section “On terminology” at categorical logic we could link to this from the very top of all relevant pages – say: “On the terminology of ’categori(c)al’ in the following see at categorical logic. ” – and then the issue would be dealt with.

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeJan 27th 2021

    So I went ahead and wrote a comment on terminology myself: here (in a new section of the entry categorical semantics).

    Maybe best to have any further discussion of this point there, in the thread for the entry on categorical semantics.

    • CommentRowNumber20.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJan 27th 2021
    • (edited Jan 27th 2021)

    Re #15: dictionaries list two different meanings for “categorical”, for example, Wiktionary says

    1. Absolute; having no exception.

    2. Of, pertaining to, or using a category or categories.

    Clearly, the second meaning makes “categorical” perfectly appropriate here. I do not understand how or why the interpretation that “categorical” necessarily refers to 1 above, whereas “categorial” means 2, came to be.

    • CommentRowNumber21.
    • CommentAuthorTodd_Trimble
    • CommentTimeJan 28th 2021

    Re #20: I don’t think it’s that. I think Toby wants “categorial” to avoid a conflict with the model theorists’ usage of the word “categorical”. My own opinion is that we don’t need such deferment.

  5. Fix Bierman thesis link


    diff, v100, current

  6. Noted that the reason the symbols matched the positive/negative grouping is because that’s how they were chosen


    diff, v101, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)