Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorMike Shulman
    • CommentTimeAug 1st 2017
    • CommentRowNumber2.
    • CommentAuthorPeter Heinig
    • CommentTimeAug 1st 2017
    • (edited Aug 1st 2017)

    (Small terminological thing that could be made smoother in future, nothing wrong: it’s about the words “output” and “input”, used within the Idea-section in

    An ordinary string diagram is a quiver, where the inputs and outputs of a vertex describe objects appearing in a tensor-product decomposition of the domain and codomain of a morphism

    • “output” and “input” so far are absent from quiver
    • are not usual terms in combinatorics
    • are of course usual terms in the more “operadic” literature.

    There is a small and related-to-the-above Pandora’s box containing the more substantial issue

    • whether to draw vertices in string diagrams as geometric shapes (a very common practice which partly seems a concession to typographical issues, but partly is done with good reason; it spoils the Poincaré-duality a bit, on the other hand is put to use in the “operadic literature” to distinguish said “outputs” and “inputs”.

    We should not open this box here.

    For the time being my suggestion is only to make a few judicious terminological changes in the “Idea”-section of hypergraph category and/or in quiver. I would suggest one if I had made up my mind on this.)

    EDIT: one issue is that simply saying “in-neighbour” and “out-neighbour” instead of “input” and “output” is not an option, since people in operad-theory really mean the parts of the edges sticking out of the respective vertices.

    But it seems to me that formalizing “input” and “ouput” is a natural application of the usual concept of “bidirected graphs”, that I started to document in the unfinished article directed graph.

    In particular the half-edges (not yet mentioned in directed graph) that are usual in the literature on bidirected graphs seem naturally suited to be put to use in string diagrams.

    • CommentRowNumber3.
    • CommentAuthorPeter Heinig
    • CommentTimeAug 1st 2017
    • (edited Aug 1st 2017)

    (re 2: suggestion: maybe an explict reference to the nice illustration at the beginning of Section 1.3.2 of Fong’s thesis could be clarifyingly added to hypergraph category, or maybe even a screenshot of said illustration, with full attribution.)

    • CommentRowNumber4.
    • CommentAuthorSam Staton
    • CommentTimeJul 8th 2019

    Addded Fong-Spivak reference

    diff, v2, current

    • CommentRowNumber5.
    • CommentAuthorSam Staton
    • CommentTimeJul 8th 2019

    Included the result of Fong and Spivak characterizing hypergraph categories as lax monoidal presheaves. I feel compelled to remark that a presheaf Cospan ΔSet\mathbf{Cospan}_\Delta\to \mathbf{Set} is itself like a hypergraph: it associates to each list of vertices (objects) a set of edges.

    diff, v3, current

    • CommentRowNumber6.
    • CommentAuthorjulesh
    • CommentTimeJul 12th 2019

    Some examples of hypergraph categories, plus a definition of spiders

    diff, v4, current

    • CommentRowNumber7.
    • CommentAuthorjulesh
    • CommentTimeJul 12th 2019

    Some examples of hypergraph categories, plus a definition of spiders

    diff, v4, current

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeJul 12th 2019

    Let’s not write

    An ordinary string diagram is a quiver

    because “quiver” is a concept with an attitude and it’s not the attitude in question here.

    Probably you want to say

    An ordinary string diagram is a graph

    possibly with some adjectives added (for most of which the relevant entries should exist, too).

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJul 15th 2019

    So I changed “quiver” to “directed graph”

    diff, v6, current

  1. Citation for Morton had the wrong author.

    Anonymous

    diff, v8, current