Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory kan lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMar 19th 2010

    I rewrote the few sentences at tangent (infinity,1)-category in an attempt to make it run more smoothly.

    In any case, there is not much there yet...

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMar 19th 2010

    rephrased the text still a bit more

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeJun 11th 2013

    added the statement about the characterization of \infty-(co-)limits in an tangent \infty-category.

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeJun 18th 2013
    • (edited Jun 18th 2013)

    added an explicit remark (with pointers to the proof) that that tangent category fibration is classified under \infty-Grothendieck construction by

    cStab(𝒞 /c). c \mapsto Stab(\mathcal{C}_{/c}) \,.
    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeJun 18th 2013
    • (edited Jun 18th 2013)

    As announced in another thread, I started typing some remark on the tangent \infty-category of an \infty-topos here.

    I had planned to do more, but then the nnLab was down all the time. Now I need to quit, so it remains a bit unsatisfactory. But maybe it’s still a start for anyone interested to join in and play with.

    • CommentRowNumber6.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 19th 2013

    So what are the tangent \infty-categories to ETop\inftyGrpd, Smooth\inftyGrpd, SynthDiff\inftyGrpd, Super\inftyGrpd, and SmoothSuper\inftyGrpd? Are there smooth spectra?

    The most rapid of searches yields a paper by Bunke – Differential cohomology

    These course note first provide an introduction to secondary characteristic classes and differential cohomology. They continue with a presentation of a stable homotopy theoretic approach to the theory of differential extensions of generalized cohomology theories including products and Umkehr maps.

    The ’differential function spectra’ there reappear in Differential function spectra, the differential Becker-Gottlieb transfer, and applications to differential algebraic K-theory.

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeJun 19th 2013
    • (edited Jun 19th 2013)

    See at differential function complexes on the nnLab. This is the method by which Hopkins-Singer in Quadratic Functions in Geometry, Topology, and M-Theory produced differential refinements of generalized cohomology theories.

    In cohesion there is a canonical way to produce these “homotopy fibers of Chern-characters” and hence differential cohomology, whence the name “differential cohomology in cohesive \infty-toposes”.

    Without an explicit notion of spectra of course, in cohesion one can only take one abelian infinity-group GG (infinite loop space) at a time and produce its differential cohomology BG conn\mathbf{B}G_{conn} (actually a braided infinity-group is sufficient for the canonical construction).

    When we get stable objects into the game, for instance by showing that the tangent \infty-category T(SmoothGrpd)T(Smooth\infty Grpd) is again an \infty-topos and hence (by the above note) a cohesive \infty-topos, then the full range of stable homotopy constructions would be available more intrinsically, not just piecewise by each of its underlying infinite loop spaces/abelian \infty-groups

    • CommentRowNumber8.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 19th 2013

    So when is the tangent to an \infty-topos again an \infty-topos? Do you think it likely that T(SmoothGrpd)T(Smooth\infty Grpd) is an \infty-topos?

    • CommentRowNumber9.
    • CommentAuthorUrs
    • CommentTimeJun 19th 2013

    So when is the tangent to an ∞-topos again an ∞-topos?

    Yes, that’s the big question here.

    André Joyal told me he has a theory of what he calls “loci”, I think, that can answer this question for a given \infty-topos. But I don’t know yet. I should check.

    • CommentRowNumber10.
    • CommentAuthorDavid_Corfield
    • CommentTimeJun 19th 2013

    Do you have a hunch about the “big question”? Is it more likely to hold for a cohesive \infinity-topos?

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeJun 19th 2013

    I really don’t know. But I’ll try to find out.

    • CommentRowNumber12.
    • CommentAuthorMike Shulman
    • CommentTimeJun 20th 2013

    My understanding of the theory of ’loci’ was that it addresses the dual question, namely when is the category of families of objects of some category a topos.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeOct 20th 2013
    • (edited Oct 20th 2013)

    I have added pointers to the alternative discussion in terms of excisive functors here. Should eventually be further expanded.

    • CommentRowNumber14.
    • CommentAuthorDavid_Corfield
    • CommentTimeOct 20th 2013

    At Stable extension ofcohesion, where it says

    Ω tot:T\Omega^{\infty} \circ tot:T H \to H assigns the total space of a spectrum bundle;

    its left adjoint is the tangent complex functor;

    shouldn’t ’tot’ be ’dom’ and ’tangent’ be ’cotangent’, or is this some other construction?

    Is there a ’co-jet’ complex?

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeOct 21st 2013
    • (edited Oct 21st 2013)

    This is the same construction that Jacob Lurie considers in the article on deformation theory.

    But here we do need to call it differently: because in Lurie’s article the category 𝒞\mathcal{C} of which one considers the tangent \infty-category T𝒞T \mathcal{C} is thought of as a category of algebras, whereas we are now speaking about taking the tangent \infty-category of a category of spaces. In the present context 𝒞=H op\mathcal{C} = \mathbf{H}^{op}.

    Therefore “tangent complex” instead of “co-tangent complex”.

    Secondly, concerning “dom” and “tot”: this is the same functor, but I find it more descriptive to speak of the functor that assigns the total space of a bundle (which is a description of its meaning) than to speak of the domain functor (which is a description only of one specific way of constructing this functor, and in fact not the way which is used in the subsection where the term appears)-

    • CommentRowNumber16.
    • CommentAuthorDavid_Corfield
    • CommentTimeDec 13th 2015
    • (edited Dec 13th 2015)

    If there’s differential cohesion available, is it possible to form the tangent (∞,1)-category by means of the modalities &\Re \dashv \Im \dashv \&?

    • CommentRowNumber17.
    • CommentAuthorUrs
    • CommentTimeDec 14th 2015

    Recall that a tangent \infty-topos is internally witnessed as being infinitesimally cohesive over the base, see here.

    • CommentRowNumber18.
    • CommentAuthorDavid_Corfield
    • CommentTimeDec 14th 2015
    • (edited Dec 15th 2015)

    I’m not sure I know what “internally witnessed” means there. I was just having a look at Quantization via Linear homotopy types and reading the definition:

    For XHX \in \mathbf{H} then Mod(X)Mod(X) are the ∗/-modal types in H /X\mathbf{H}_{/X} which are left orthogonal to \Im-modal types,

    and wondering if becomes easier to speak of the tangent at an object XHX \in \mathbf{H} with modalities such as \Im available, rather like I can give an easier account of the tangent space of a manifold MM in SDG as M DM^D, since I have infinitesimals available.

    • CommentRowNumber19.
    • CommentAuthorDavid_Corfield
    • CommentTimeJan 14th 2019

    A different sense of ’tangent ∞-category’?

    Tangent ∞-categories and Goodwillie calculus, Michael Ching, talk

    Goodwillie calculus is a set of tools in homotopy theory developed, to some extent, by analogy with ordinary differential calculus. The goal of this talk is to make that analogy precise by describing a common category-theoretic framework that includes both the calculus of smooth maps between manifolds, and Goodwillie calculus of functors, as examples. This framework is based on the notion of “tangent category” introduced first by Rosicky and recently developed by Cockett and Cruttwell in connection with models of differential calculus in logic, with the category of smooth manifolds as the motivating example. In joint work with Kristine Bauer and Matthew Burke (both at Calgary) we generalize to tangent structures on an (∞,2)-category and show that the (∞,2)-category of presentable ∞-categories possesses such a structure. This allows us to make precise, for example, the intuition that the ∞-category of spectra plays the role of the real line in Goodwillie calculus. As an application we show that Goodwillie’s definition of n-excisive functor can be recovered purely from the tangent structure in the same way that n-jets of smooth maps are in ordinary calculus. If time permits, I will suggest how other concepts from differential geometry, such as connections, may play out into the context of functor calculus.

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeJan 14th 2019

    Thanks for the alert. I have forwarded this to Vincent.

    • CommentRowNumber21.
    • CommentAuthorDavid_Corfield
    • CommentTimeJan 14th 2019

    Perhaps a few talks of interest there at Homotopy harnessing higher structures. I think you were looking at graph complexes and configuration spaces before Christmas:

    Configuration spaces of points and real Goodwillie-Weiss calculus, Thomas Willwacher, talk

    The manifold calculus of Goodwillie and Weiss proposes to reduce questions about embedding spaces of manifolds to questions about mapping spaces of the (little-disks modules of) configuration spaces of points on those manifolds. We will discuss real models for these configuration spaces. Furthermore, we will see that a real version of the aforementioned mapping spaces is computable in terms of graph complexes. In particular, this yields a new tool to study diffeomorphism groups and moduli spaces.

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)