Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory object of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2019

    started adding something (the example of the Hopf fibration and some references).

    What’s a canonical reference on the Whitehead products corresponding to the Hopf fibrations? Like what is an original reference and what is a textbook account?

    diff, v11, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2019

    added more references on Whitehead products in rational homotopy theory, here

    diff, v12, current

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeApr 30th 2019

    I have added a section Relation to Sullivan models with the statement that the co-binary part of the Sullivan differential equals the \mathbb{Q}-linear dual of the Whitehead product.

    There is a hidden factor of 2 in that statement, which I would like to understand better. But I’ll give that statement now it’s own entry, and then ask my question there…

    diff, v13, current

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeApr 30th 2019
    • (edited Apr 30th 2019)

    finally added the original references

    • J. H. C. Whitehead, Section 3 of On Adding Relations to Homotopy Groups, Annals of Mathematics Second Series, Vol. 42, No. 2 (Apr., 1941), pp. 409-428 (jstor:1968907)

    Then I made explicit the subtlety with [ϕ,ϕ] Wh[\phi,\phi]_{Wh} (here).

    Finally I reorganized a little, starting to put the previous material into appropriate subsections.

    diff, v14, current

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 30th 2019
    • (edited Apr 30th 2019)

    made the shift in the grading more explicit

    diff, v14, current

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeApr 30th 2019

    added the actual definition;

    moved all discusson of super Lie algebra structure to the Properties-section

    diff, v14, current

    • CommentRowNumber7.
    • CommentAuthorGuest
    • CommentTimeSep 15th 2020
    The commutativity statement appears to be wrong. On the LHS and RHS you have phi_1 and phi_2 in the same order. The sign in front of them appears to be wrong, as well. It should be (-1)^{n_1n_2}. The proof is rather elementary, and boils down to the linear iso of R^{n_1+n_2} that switches the first n_1 columns with the last n_2 has determinant (-1)^{n_1n_2}. -Ryan Budney
    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeSep 15th 2020
    • (edited Sep 15th 2020)

    Thanks for catching this. Both fixed now.

    [ The missing re-ordering was a silly typo, but the difference in sign came from thinking L-infinity algebras as opposed to dg-Lie algebras, via the pertinent isomorphism (equation (3) in arXiv:hep-th/9209099). ]

    • CommentRowNumber9.
    • CommentAuthornsnyder
    • CommentTimeDec 17th 2020
    Is the link to the article on "the" in the attaching map really appropriate? Is it really unique up to unique isomoprhism? I don't think so for the usual reason that the commutator might be aba'b' or bab'a' or ab'a'b etc. Instead I think this relies on a non-isomorphism-invariant convention used in the definition of the product of CW complexes. If I'm wrong and there's a reason it truly is unique then it would be nice to have further elaboration as to why. At a bare minimum antisymmetry of the Whitehead product combined with symmetry of the categorical product means that it's at best unique up to sign. My hope is that even though each Whitehead product is highly non-unique, all Whitehead products taken together are unique up to an overall sign. But I don't know the right statement.
    • CommentRowNumber10.
    • CommentAuthornsnyder
    • CommentTimeDec 17th 2020
    I should maybe say my motivation in asking about this. One can give different definitions of the Whitehead product in HoTT, one using the iterated suspension definition of spheres and one using the single-celled HIT definition of spheres, and I would like to have some sense of how hard it is to see that they agree (after fixing an identification between the different descriptions of the sphere). This is mostly out of curiosity and not necessity, because for the appearance of the Whitehead product that I care about any such attaching map will do.
    • CommentRowNumber11.
    • CommentAuthorRichard Williamson
    • CommentTimeDec 18th 2020
    • (edited Dec 18th 2020)

    Hi Noah, once we fix our models of the four spaces involved in the pushout diagram into which the attaching map fits, and fix once and for all how to include spheres into discs (this fixing is part of the definition of a CW-complex, as is the fixing of models of S n 1+n 21S^{n_1 + n_2 -1} and D n 1+n 2D^{n_1 + n_2}), then the attaching map is unique (on the nose), by the universal property of a product together with the fact that the map S n 1S n 2S n 1×S n 2S^{n_1} \vee S^{n_2} \rightarrow S^{n_1} \times S^{n_2} is a monomorphism. Thus, once we have fixed our definition of a CW-complex, the attaching map is unique on the nose up to a choice of model for S n 1S n 2S^{n_1} \vee S^{n_2}, and our choice of the latter is irrelevant since it is part of a map which we are ultimately interested in considering up to homotopy.

    We should add an explanation of this kind to the page!

    When it comes to signs, the decomposition into n 1n_1 and n 2n_2,. i.e. the choice to work with S n 1×S n 2S^{n_1} \times S^{n_2} and not S n 2×S n 1S^{n_2} \times S^{n_1} is part of the input to the construction of a Whitehead product, i.e. the two possibilities are to be regarded as different.

    Not sure if this answers your question?

    • CommentRowNumber12.
    • CommentAuthornsnyder
    • CommentTimeDec 20th 2020

    Hi Richard, thanks for the explanation. I still don’t think I completely understand.

    First, I agree that you’ve given a validly specified construction of “a” Whitehead product.

    However, there are other constructions of a Whitehead product where it’s not completely clear if they agree with this one. For example, if you look at Section 8 of Brunerie there’s a construction of a Whitehead product that uses iterated suspensions. In particular, if you translate into the language of CW complexes and unpack the induction, it’s using a CW complex for the 2-sphere where you have two 2-cells (northern and southern hemispheres), two 1-cells (eastern and western equators), and two 0-cells. In this particular case I think it’s probably not hard to fix an identification between this sphere and the standard sphere and then check whether Brunerie’s Whitehead product is yours (this is exactly the exercise that lead me to ask this question). It’s pretty clear that in this case there’s an arbitrary choice of convention (whether you prefer the northern or southern hemisphere) which gives an overall sign. But my point is that this is another Whitehead product and it’s not clear that either deserves to be called “the” Whitehead product.

    And importantly, neither Wikiedpia nor the nLab seems to think that you need to work with a specific CW-description. I’d much rather have a model-free description of the Whitehead product. But at first glance it seems like the situation is quite bad, because to identify each sphere with the standard sphere you have to pick a sign and you have to do this independently in each dimension! So it’s a torsor for (Z/2Z) (Z/2Z)^\infty. But my suspicion is that most of those are “poorly behaved” (e.g. in terms of properties of the resulting Whitehead product), and that one is supposed to impose some kind of additional condition with respect to suspension. At that point one can hope that there are exactly two Whitehead products.

    • CommentRowNumber13.
    • CommentAuthorRichard Williamson
    • CommentTimeDec 20th 2020
    • (edited Dec 20th 2020)

    [Removed, will come back later when in less haste!].

    • CommentRowNumber14.
    • CommentAuthorRichard Williamson
    • CommentTimeDec 20th 2020
    • (edited Dec 20th 2020)

    Hi Noah, an elaboration on my removed comment! To construct the Whitehead product, we have to construct an attaching map of the required kind, in particular fitting into a pushout diagram of the required kind, in any way you like (using any models you like). Once we have done that, we can see that any other choices for the pushout diagram give, up to a choice of model for (i.e. up to automorphisms of) the source and target, an attaching map equal to the one we first constructed, for the reasons I gave: the universal property of a product and of a monomorphism. Finally, observe that the models for the source and target of the attaching map are irrelevant since we are ultimately working up to homotopy.

    In particular, it doesn’t matter what CW-structures or more generally what models we choose: any construction fits up to isomorphism into a pushout diagram of the required kind (in particular such that the right vertical map is a monomorphism), and then it must be equal to the first one we constructed up to models of the source and target, which are, as observed, irrelevant.

    • CommentRowNumber15.
    • CommentAuthornsnyder
    • CommentTimeDec 20th 2020

    I don’t follow the step “Finally, observe that the models for the source and target of the attaching map are irrelevant since we are ultimately working up to homotopy.” My apology if I’m being dumb. Spheres have nontrivial automorphisms even up to homotopy.

    • CommentRowNumber16.
    • CommentAuthorRichard Williamson
    • CommentTimeDec 20th 2020
    • (edited Dec 21st 2020)

    Good to discuss it, I often find treatments of this kind of thing unsatisfactory!

    If one is working with homotopy groups on the nose, then the two maps ϕ 1\phi_1 and ϕ 2\phi_2 require a choice of model of the wedge sum, and the choice of model of the target homotopy group requires a choice of model of S n 1+n 21S^{n_1 + n_2 - 1}.

    The point is really that in practise mathematicians almost never work up to equality, they work up to isomorphism or weaker. In particular, we never really fix a model up to equality of a homotopy group, we allow it to be replaced silently up to isomorphism. That is what is at stake here: when I wrote that the choices of models are irrelevant, I meant that since it only really makes sense to work up to isomorphism anyway when it comes to homotopy groups, we cannot worry about choices of those models.

    I do think though that we can add something to the page to help clarify things. One thing that is really critical, for instance, is that the definition of an attaching map must require that the right vertical map is a monomorphism.

    • CommentRowNumber17.
    • CommentAuthornsnyder
    • CommentTimeDec 21st 2020

    We seem to still be entirely speaking past each other. I have no problem with working up to isomorphism. I still think there’s a 2 2^\infty component space of Whitehead products unless you impose some additional compatibility, and that even with this additional compatibility there’s still two Whitehead products. I can’t even sort out whether your comment is disagreeing with my claim in that direction or not.

  1. Yes, I am disagreeing with you, and am agreeing with the nLab page that the ’the’ is justified. I was trying to point out that your arguments are relying on specifics of the models of the spaces involved, which cannot be relevant when working up to isomorphism.

    In #15, you seemed to follow my explanation until its final step. In #16, I explained this final step. Again: a purely category theoretic argument shows that the attaching map is unique up automorphisms of its source and target. If you wish to consider homotopy groups up to isomorphism, you have to identify the attaching maps obtained by automorphisms of the source, since if you replace that source sphere by one isomorphic to it, you get the same homotopy group up to isomorphism in which the Whitehead product lives.

    In other words: if you are working with homotopy groups up to isomorphism, you have to identify Whitehead products obtained under those isomorphisms to have a well-defined notion.

    The same considerations apply to the target of the attaching map, namely the wedge sum.

    • CommentRowNumber19.
    • CommentAuthorHurkyl
    • CommentTimeDec 22nd 2020
    • (edited Dec 22nd 2020)

    deleted

    • CommentRowNumber20.
    • CommentAuthorGuest
    • CommentTimeMar 8th 2021
    It seems that the section "In terms of Samelson products" is still the same unfinished draft as in version 2 of this page. I couldn't find the "old survey article of Ed Curtis", can anyone give a reference? Curtis's website is a bunch of pdfs about networks and cluster algebras, with no bibliography, in which I'm also interested.
    • CommentRowNumber21.
    • CommentAuthorGuest
    • CommentTimeMar 8th 2021
    Found the reference in this unanswered question of Tim Porter: https://mathoverflow.net/questions/296479/kans-simplicial-formula-for-the-whitehead-product
    -author of previous comment
    • CommentRowNumber22.
    • CommentAuthorUrs
    • CommentTimeMar 8th 2021
    • (edited Mar 8th 2021)

    added pointer to

    (among other things, they speak about relating Whitehead products to Samelson products in their section 1)

    diff, v21, current

    • CommentRowNumber23.
    • CommentAuthorTim_Porter
    • CommentTimeAug 29th 2021

    Moved a reference to Scherer-Chorny, which seemed misplaced. Created a stub section on the relationship with Goodwillie calculus (just to put that ref. somewhere.)

    diff, v22, current

    • CommentRowNumber24.
    • CommentAuthorUrs
    • CommentTimeJul 9th 2023

    added (here) brief statement of the Whitehead product as the commutator of the Pontrjagin product, under the Hurewicz homomorphism, from:

    diff, v24, current

    • CommentRowNumber25.
    • CommentAuthorUrs
    • CommentTimeJul 9th 2023

    added pointer to:

    diff, v25, current

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeJul 9th 2023

    added mentioning that in char=0 the Pontrjagin ring is in fact the universal enveloping algebra of the Whitehead algebra, from

    diff, v25, current

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeNov 27th 2023
    • (edited Nov 27th 2023)

    Below the proposition saying that the Whitehead bracket is the binary bracket in the L L_\infty-algebra dual to a Sullivan model, I added a remark (here) on why there is indeed no non-trivial Jacobiator in these L L_\infty-algebras.

    diff, v30, current