Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics comma complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    I gave regular cardinal its own page.

    Because I am envisioning readers who know the basic concept of a cardinal, but might forget what “regular” means when they learn, say, about locally representable category. Formerly the Lab would just have pointed them to a long entry cardinal on cardinals in general, where the one-line definition they would be looking for was hidden somewhere. Now instead the link goes to a page where the definition is the first sentence.

    Looks better to me, but let me know what you think.

    • CommentRowNumber2.
    • CommentAuthorHarry Gindi
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    I agree. These are the kinds of little changes that greatly improve readability! =)

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2010

    I agree. These are the kinds of little changes that greatly improve readability! =)

    Okay, good. I have kept the stuff on regular cardinals at cardinal by the way. Because we also had the complaint that too many entries are not self-contained enough. It can be a difficult design decision.

    • CommentRowNumber4.
    • CommentAuthorHarry Gindi
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    Redundancy is not a priori a bad thing. What would be bad is if the entries contradicted each other. “Recalling” the definition is often helpful, especially for a work like the nLab.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    Redundancy is not a priori a bad thing. […] “Recalling” the definition is often helpful, especially for a work like the nLab.

    What troubles me is that with whole chunks of material duplicated, all further changes/imrpovements/additions/corrections would need to by done twice and harmonized. That goes against the whole wiki-spirit.

    I suppose there should be automated solutions, where one uses an include command to include the content of one entry into another. But then the indluded content needs to b prepared, suitably, for instance in not having its own TOC and things like that. Can get messy.

    • CommentRowNumber6.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    From regular cardinal:

    because a set with cardinality less than aleph-1 is a finite set

    which is clearly false :) Friendly lab elf, please bypass the spam filter on my behalf and fix this by replacing this with aleph-0 :)

    • CommentRowNumber7.
    • CommentAuthorAndrew Stacey
    • CommentTimeApr 15th 2010

    The way to address the problem that Urs and Harry were discussing is with use of the !include directive. If the "regular cardinal" section of "cardinal" is truly to be a copy of the content at "regular cardinal", then make it so by putting [[!include regular cardinal]] at the correct point.

    (Yay! I managed to type that without using any funny entities for the square brackets.)

    • CommentRowNumber8.
    • CommentAuthorMike Shulman
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    I don’t think the text about regular cardinals at cardinal should be the same as (e.g. !included from) regular cardinal. The latter can be arbitrarily detailed, whereas at the former we are mentioning it only as one of many properties of cardinals and thus should not spend a huge amount of time on it. I’m not extremely bothered about the “duplication” here, because it doesn’t seem to me that there should ever be very much content at cardinal to duplicate; most new content should be added to regular cardinal. If the definition of regular cardinal ever changed, then we’d have to change it in both places, but that seems unlikely.

    • CommentRowNumber9.
    • CommentAuthorMike Shulman
    • CommentTimeApr 15th 2010

    Is there any reason you chose π\pi to denote the regular cardinal at regular cardinal? Usually cardinals are denoted by κ\kappa

    • CommentRowNumber10.
    • CommentAuthorHarry Gindi
    • CommentTimeApr 15th 2010

    Yes, pi is definitely an overloaded letter.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2010

    Is there any reason you chose π\pi to denote the regular cardinal at regular cardinal?

    This was copy-and-pasted from cardinal. I don’t recall who made that choice there, and for what reason.

    • CommentRowNumber12.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 21st 2021

    Gave a proof that infinite successor cardinals are regular.

    diff, v25, current

    • CommentRowNumber13.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 29th 2021

    Added:


    Relevance for category theory

    Regular cardinals λ\lambda are used in the definitions of λ\lambda-filtered colimits, λ\lambda-presentable objects, λ\lambda-accessible categories, locally λ\lambda-presentable categories, λ\lambda-ind-completion, and many notions derived from these, e.g., λ\lambda-combinatorial model categories.

    Then notions make sense for all cardinals, not necessarily regular. However, the relevant concepts reduce to those for regular cardinals.

    Recall that the cofinality cof(λ)cof(\lambda) of a cardinal λ\lambda is the smallest cardinal μ\mu such that λ\lambda is a sum of μ\mu cardinals smaller than λ\lambda.

    A cardinal λ\lambda is regular if and only if λ=cof(λ)\lambda=cof(\lambda).

    A category has λ\lambda-filtered colimits if and only if it has cof(λ)cof(\lambda)-filtered colimits.

    A category is locally λ\lambda-presentable if and only if it is locally cof(λ)cof(\lambda)-presentable.

    Related concepts


    diff, v27, current

    • CommentRowNumber14.
    • CommentAuthorMarc Hoyois
    • CommentTimeJul 29th 2021
    • (edited Jul 29th 2021)

    A category has λ\lambda-filtered colimits if and only if it has cof(λ)cof(\lambda)-filtered colimits.

    A category is locally λ\lambda-presentable if and only if it is locally cof(λ)cof(\lambda)-presentable.

    There are arbitrarily large cardinals of cofinality ω\omega, so if this were true then any category with λ\lambda-filtered colimits would have ω\omega-filtered colimits. I think one should replace cof(λ)cof(\lambda) by λ +\lambda^+ in these statements (the successor cardinal of λ\lambda, which is always regular). Indeed, if cof(λ)<λcof(\lambda)\lt\lambda, then every set of cardinality <λ +\lt\lambda^+ is a union of <λ\lt\lambda subsets of cardinality <λ\lt\lambda, so every λ\lambda-filtered poset is automatically λ +\lambda^+-filtered.

    • CommentRowNumber15.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 29th 2021

    Correction:

    If λ\lambda is not a regular cardinal, then a category has λ\lambda-filtered colimits if and only if it has λ +\lambda^+-filtered colimits, and λ +\lambda^+ is always a regular cardinal (assuming the axiom of choice).

    diff, v28, current

    • CommentRowNumber16.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 29th 2021

    Re #14: The first part was indeed nonsense.

    What is a counterexample to the second part? (A category is locally λ-presentable if and only if it is locally cof(λ)-presentable.)

    • CommentRowNumber17.
    • CommentAuthorMike Shulman
    • CommentTimeJul 30th 2021

    Note that this second part is the statement of Exercise 1.b(3) in Locally presentable and accessible categories (page 59). But that doesn’t necessarily mean it’s correct, because the immediately preceding Exercise 1.b(2) is definitely wrong (I have verified this with Jiri Rosicky). There is a more extensive and corrected treatment of presentability for non-regular cardinals in section 3 of Internal sizes in μ-abstract elementary classes; perhaps it contains the answer to this question.

    • CommentRowNumber18.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 30th 2021
    • (edited Jul 30th 2021)

    Re #17: I must say that the definition of a locally λ-presentable category always confused me by its unmotivated introduction of regular cardinals.

    According to #14, if a locally λ-presentable category is locally λ^+-presentable for any nonregular cardinal λ, then it would seem that Exercise 1.b(2) must be false: if μ<ν are regular cardinals then locally μ-presentable categories are always locally ν-presentable, and there are locally ν-presentable categories that are not μ-presentable.

    Substituting μ=cf(λ) and ν=λ^+ produces a counterexample.

    • CommentRowNumber19.
    • CommentAuthorMarc Hoyois
    • CommentTimeJul 30th 2021

    I agree this is a counterexample.

    I was also confused by the restriction to regular cardinals in these definitions. It is explained in the book by Gabriel and Ulmer where presentability is first introduced, but it seems later references never comment on this. On page 2 in the introduction they write (translated from German):

    Let α\alpha be a cardinal, with 3α<3\leq \alpha\lt\infty [sic]. A poset (N,)(N,\leq) is called α\alpha-filtered if for every family (ν i) iI(\nu_i)_{i\in I} in NN with card(I)<αcard(I)\lt\alpha there exists μN\mu\in N such that ν iμ\nu_i\leq \mu. Let β\beta be the smallest regular cardinal α\geq \alpha. Then every α\alpha-filtered poset is also β\beta-filtered. We therefore assume in the sequel that α\alpha is regular.

    • CommentRowNumber20.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 30th 2021
    • (edited Jul 30th 2021)

    Corrected version:


    Relevance for category theory

    Regular cardinals λ\lambda are used in the definitions of λ\lambda-filtered colimits, λ\lambda-presentable objects, λ\lambda-accessible categories, locally λ\lambda-presentable categories, λ\lambda-ind-completion, and many notions derived from these, e.g., λ\lambda-combinatorial model categories.

    Then notions make sense for all cardinals, not necessarily regular. However, the relevant concepts reduce to those for regular cardinals.

    The relevance of regular cardinals for these concepts was already pointed out by Gabriel and Ulmer in their original treatise on locally presentable categories, where on page 2 we read:

    Sei α\alpha eine Kardinalzahl, wobei 3α<3 \le \alpha \lt \infty. Eine geordnete Menge (N,)(N,\le) heisst α\alpha-gerichtet, wenn es für jede Familie (ν i) iI(\nu_i)_{i\in I} in NN mit Kard(I)<αKard(I) \lt \alpha ein μ\mu gibt derart, dass ν iμ\nu_i\le\mu. Sei β\beta die kleinste reguläre Kardinalzahl α\ge \alpha. Dann ist jede α\alpha-gerichtete Menge auch β\beta-gerichtet. Wir setzen deshalb im folgenden zusatzlich voraus, dass α\alpha regulär ist (vgl. §0).

    If λ\lambda is not a regular cardinal, then a category has λ\lambda-filtered colimits if and only if it has λ +\lambda^+-filtered colimits, and λ +\lambda^+ is always a regular cardinal (assuming the axiom of choice). In this case, a category is locally λ\lambda-presentable if and only if it is locally λ +\lambda^+-presentable.


    diff, v30, current

    • CommentRowNumber21.
    • CommentAuthorJonasFrey
    • CommentTimeJul 30th 2021

    The assumption α<\alpha\lt\infty in the quote looks a bit confusing to me. If \infty means 0\aleph_0 then the smallest cardinal α\geq\alpha is necessarily \infty. So I assume \infty means “the size of the universe”?

    That would actually be consistent with the use of “\infty-filtered” in Adamek/Lawvere/Rosicky’s “Continuous categories revisited”.

    • CommentRowNumber22.
    • CommentAuthorDmitri Pavlov
    • CommentTimeJul 30th 2021

    Added further clarifications:

    The relevance of regular cardinals for these concepts was already pointed out by Gabriel and Ulmer in their original treatise on locally presentable categories, where on page 2 we read:

    Sei α\alpha eine Kardinalzahl, wobei 3α<3 \le \alpha \lt \infty. Eine geordnete Menge (N,)(N,\le) heisst α\alpha-gerichtet, wenn es für jede Familie (ν i) iI(\nu_i)_{i\in I} in NN mit Kard(I)<αKard(I) \lt \alpha ein μ\mu gibt derart, dass ν iμ\nu_i\le\mu. Sei β\beta die kleinste reguläre Kardinalzahl α\ge \alpha. Dann ist jede α\alpha-gerichtete Menge auch β\beta-gerichtet. Wir setzen deshalb im folgenden zusatzlich voraus, dass α\alpha regulär ist (vgl. §0).

    where the meaning of α<\alpha\lt\infty is explained on page 13:

    Ausserdem bezeichnen wir mit \infty die kleinste Kardinalzahl, die nicht mehr zu UU gehört (die also in unserer Sprache keine Menge ist).

    Dieser Arbeit liegt die Mengenlehre von Zermelo-Fraenkel und ein fest gewähltes
    Universum UU zugrunde. Wir setzen dabei voraus, dass UU die Menge N\mathbf{N} der natürlichen Zahlen enthält.

    diff, v31, current

    • CommentRowNumber23.
    • CommentAuthorDmitri Pavlov
    • CommentTimeSep 30th 2021

    Added:

    Reference: Proposition 5.6 in Rezk \cite{Rezk}.

    diff, v32, current

    • CommentRowNumber24.
    • CommentAuthorDmitri Pavlov
    • CommentTimeOct 2nd 2022

    This page asserts that the cofinality of the cardinals κ=1 and κ=2 equals κ, since cf(κ)=κ is listed as one of the equivalent definitions of regular cardinals.

    However, according to the definition given at cofinality, the cofinality of every finite cardinal is 0.

    diff, v35, current