Not signed in (Sign In)

Start a new discussion

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-categories 2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry bundles calculus categories category category-theory chern-weil-theory cohesion cohesive-homotopy-theory cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology definitions deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry differential-topology digraphs duality elliptic-cohomology enriched fibration finite foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory infinity integration integration-theory k-theory kan lie-theory limit limits linear linear-algebra locale localization logic manifolds mathematics measure-theory modal modal-logic model model-category-theory monoidal monoidal-category-theory morphism motives motivic-cohomology multicategories nonassociative noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pasting philosophy physics planar pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory string string-theory subobject superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2010

    I felt there should be an entry category of presheaves. So I started one.

    • CommentRowNumber2.
    • CommentAuthorHarry Gindi
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    I’ve wondered something for a long time. Why is it called a “free cocompletion” if Psh is not idempotent. Is it idempotent if we fix a universe U and look at U-Psh(C)? Or is it perhaps more subtle? For any subcanonical grothendieck topology, there is a natural assignment of a grothendieck topology on Sh(C) (cf. SGA 4. This follows by a theorem of Giraud) such that Sh(Sh(C)) is equivalent to Sh(C) (the theorem of Giraud specifically gives a natural assignment of a grothendieck topology on Psh(C) that restricts to the canonical topology on the full reflective subcategory Sh(C)). Can we say something similar about presheaf categories? In particular, the assignment gives the canonical topology on Psh(C) for the chaotic topology on C.

    I say this simply because the definition of a closure/completion operator requires idempotence.

    • CommentRowNumber3.
    • CommentAuthorTodd_Trimble
    • CommentTimeApr 15th 2010

    Good question, but no, even in contexts that permit it (such as small categories enriched in a quantale), taking presheaves can never be idempotent unless the base of enrichment is equivalent to a trivial category.

    In this case “free cocompletion” comes from “free” as left adjoint to the forgetful functor going from “cocomplete” categories to categories, so “free cocompletion” is a linguistic back-formation which refuses to fit the general rule cited on that page. But there is plenty of relevant commentary on this point at completion: recall that a monadic functor gives an idempotent monad if and only if it is full and faithful. In the language of stuff, structure, and property, this is precisely the case where the monadic functor is a functor which forgets “only properties”. It is explained at completion that there is intermediate notion called “property-like structure”: where the structures are described by properties (e.g., small colimit structure is unique when it exists), but the forgetful functor is not full because not every morphism in the target category preserves that structure (e.g., not every functor between cocomplete categories preserves colimits). And if the monadic functor is not full, then the monad can’t be idempotent.

    The usage is too well-established to do anything about it, so nLab will not play Bourbaki here; we’ll therefore be descriptive, not prescriptive.

    • CommentRowNumber4.
    • CommentAuthorHarry Gindi
    • CommentTimeApr 15th 2010
    • (edited Apr 15th 2010)

    The usage is too well-established to do anything about it, so nLab will not play Bourbaki here; we’ll therefore be descriptive, not prescriptive.

    No arguments here. As I’ve said before, I’m against all attempts to Bourbaki definitions until we Bourbaki prestack to be a pseudofunctor into Cat.

    • CommentRowNumber5.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 16th 2010

    Questions at category of presheaves

    • CommentRowNumber6.
    • CommentAuthorHarry Gindi
    • CommentTimeApr 16th 2010

    I think I answered your question. What I said is definitely true for subcanonical topologies, and I believe that for nonsubcanonical topologies, it’s rather trivial.

    • CommentRowNumber7.
    • CommentAuthorMike Shulman
    • CommentTimeApr 16th 2010

    Well, you need to restrict to left-exact reflective subcategories, and I don’t think subcanonicality has much to do with it.

    • CommentRowNumber8.
    • CommentAuthorUrs
    • CommentTimeApr 16th 2010

    By the way, this is all described at category of sheaves.

    What was that funny effect that all the “\infty“-signs in the last line of category of presheaves had been removed? I put them back in. What happened there?

    • CommentRowNumber9.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 16th 2010

    I’m afraid I feel my question has not been answered yes or no, yet. Certainly there are topologies such that the associated categories of sheaves are sub-topoi, and left-exact reflective subcategories are sheaves on some topology, but what if I have some category CC' equipped with an adjoint equivalence to the subtopos? Is it wrong to think of CC' as a subtopos as well? If it is a subtopos, then is it a Grothendieck topos (i.e. actually a category of sheaves) or just equivalent to one? (this question, I am well aware, may be completely stupid, but please treat me as ignorant of finer points of topos theory - except you Harry; you can continue to revere me ;P )

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeApr 16th 2010
    • (edited Apr 16th 2010)

    a Grothendieck topos (i.e. actually a category of sheaves) or just equivalent to one?

    What an evil question! We don’t distinguish between categories of sheaves and categories equivalent to them.

    A Grothendieck topos is of course a category equivalent to one that is sheaves on something.

    • CommentRowNumber11.
    • CommentAuthorMike Shulman
    • CommentTimeApr 16th 2010

    And any sub-(elementary-topos) of a Grothendieck topos is in fact itself a Grothendieck topos, if that’s what you’re worried about.

    • CommentRowNumber12.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 16th 2010
    • (edited Apr 16th 2010)

    That’s fine, but what about a sub-(elementary topos) of a presheaf topos? Perhaps I should be asking whether a presheaf topos is a Grothendieck topos (this is standard knowledge I know, but I’m in the mood for extracting answers out of people today).

    @Urs: thats pretty much what I thought.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeApr 16th 2010
    • (edited Apr 16th 2010)

    whether a presheaf topos is a Grothendieck topos

    Yes, because it is sheaves for the trivial topology. More elegantly: it is evidently an exact reflective subcategory of itself.

    what about a sub-(elementary topos) of a presheaf topos?

    Well, as we said, this is one of the equivalent definitions of Grothendieck toposes: geometric embeddings into presheaf toposes.

    • CommentRowNumber14.
    • CommentAuthorHarry Gindi
    • CommentTimeApr 16th 2010

    Well, as we said, this is one of the equivalent definitions of Grothendieck toposes: geometric embeddings into presheaf toposes.

    Yes, and this is the property that is abstracted to the (∞,1) case.

    • CommentRowNumber15.
    • CommentAuthorDavidRoberts
    • CommentTimeApr 17th 2010

    because it is sheaves for the trivial topology.

    ok - that clears thing up. Thanks for the help.

    • CommentRowNumber16.
    • CommentAuthoradeelkh
    • CommentTimeApr 18th 2014
    • (edited Apr 18th 2014)

    I added the page functoriality of categories of presheaves because I felt it should exist, even though we do have restriction and extension of sheaves. (Also added a link from category of presheaves.)

    • CommentRowNumber17.
    • CommentAuthorMike Shulman
    • CommentTimeApr 18th 2014

    Ought to at least link to Kan extension

    • CommentRowNumber18.
    • CommentAuthorThomas Holder
    • CommentTimeOct 4th 2018

    I copied over some elaborations on the fundamental theorem of presheaf slices from over-topos.

    diff, v24, current

    • CommentRowNumber19.
    • CommentAuthorThomas Holder
    • CommentTimeOct 16th 2018

    Expanded a bit on Bunge’s characterization theorem by giving some references.

    diff, v25, current

Add your comments
  • Please log in or leave your comment as a "guest post". If commenting as a "guest", please include your name in the message as a courtesy. Note: only certain categories allow guest posts.
  • To produce a hyperlink to an nLab entry, simply put double square brackets around its name, e.g. [[category]]. To use (La)TeX mathematics in your post, make sure Markdown+Itex is selected below and put your mathematics between dollar signs as usual. Only a subset of the usual TeX math commands are accepted: see here for a list.

  • (Help)