Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration finite foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf sheaves simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorTim_van_Beek
    • CommentTimeMay 16th 2010

    I began to add a definition of conformal field theory using the Wightman resp. Osterwalder-Schrader axiomatic approach. My intention is to define and explain the most common concepts that appear again and again in the physics literature, but are rarely defined, like “primary field” or “operator product expansion”.

    (I remember that I asked myself, when I first saw an operator product expansion, if the existence of one is an axiom or a theorem, I don’t remember reading or hearing an answer of that until I looked in the book by Schottenloher).

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 16th 2010

    Tim,

    thanks a million. Very nice that you put energy into this!

    While I have not time to join you in your efforts here right now, I just restructred the section outline slightly, in order to remind us that eventually the discussion that you put in (which is about CFT or even “rational” CFT on the plane) needs to be accompanied by more dicussion on the definition of CFT on surfaces of arbitrary genus.

    I remember that I asked myself, when I first saw an operator product expansion, if the existence of one is an axiom or a theorem,

    Good point. The literature seems to be divided into those who assume that “vertex operator algebra” is a definition of (chiral) CFT, those who use AFT-style definitions, and, finally, those who don’t use any real definition, or maybe some path integral heuristics.

  1. some path integral heuristics

    this actually leads to OPEs. I have some never cleaned up notes on this, for an old talk “Vertex algebras avant Borcherds” I gave in Milan a few years ago. now I see my nLab area is a good place for letting them free. Just give me a day to reformat them, within 24 hours from now they’ll be there :)

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeMay 16th 2010

    some path integral heuristics

    this actually leads to OPEs.

    Oh for sure they do. But it’s a bit heuristic. That’s all I meant to say.

    • CommentRowNumber5.
    • CommentAuthorUrs
    • CommentTimeMay 16th 2010

    Just give me a day to reformat them, within 24 hours from now they’ll be there :)

    Very nice. Thanks!!

  2. But it’s a bit heuristic.

    much more than a bit.. :-)

    • CommentRowNumber7.
    • CommentAuthorUrs
    • CommentTimeMay 17th 2010
    • (edited May 17th 2010)

    Dmitriy Drichel had kindly added some comments to conformal field theory on how the conformal group is most interesting in d=2d = 2. I have further added a remark on how nevertheless the case of d=2 CFT is the best understood case, as far as really the QFTs go.

    Much more should be said here eventually, of course.

    • CommentRowNumber8.
    • CommentAuthorTim_van_Beek
    • CommentTimeMay 17th 2010

    Urs said:

    eventually the discussion … needs to be accompanied by more dicussion on the definition of CFT on surfaces of arbitrary genus.

    Ok, but that’s a topic that I do not know much about (but are willing to learn :-)

    Domenico said:

    now I see my nLab area is a good place for letting them free.

    Yes, definitly! Maybe OPE should then get their own page. Is there a canonical way to find someone’s nLab area?

    Dmitriy Drichel had kindly added some comments to conformal field theory on how the conformal group is most interesting in d=2.

    The book by Schottenloher has a nice discussion of this and an explanation how and why the physics terminology is confusing for mathematicians. Eventually I would like to discuss some aspects of this on a conformal group page, but everyone should feel free to beat me to it :-)

    • CommentRowNumber9.
    • CommentAuthordomenico_fiorenza
    • CommentTimeMay 17th 2010
    • (edited May 17th 2010)

    Here are the notes from my talk (first part).

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeMay 18th 2010

    Thanks, Domenico, nice notes.

    I added a link to them in the References-section at vertex operator algebra.

    I also took the liberty of adding a TOC to your page. Hope you don’t mind.

  3. Thanks! both for the reference and for the TOC.

    There’s a lot of editing to do there apart from reformatting: adding links to nLab pages! I’ll do at the end of the reformatting, but if anyone wills to add a few links while reading the cleaned up part..

    • CommentRowNumber12.
    • CommentAuthordomenico_fiorenza
    • CommentTimeMay 18th 2010
    • (edited May 18th 2010)

    a few lines added to the notes. we’ll meet OPEs tomorrow :)

  4. completed reformatting from beamer. still links to be added; another day.

    • CommentRowNumber14.
    • CommentAuthorzskoda
    • CommentTimeMay 19th 2010

    I have further added a remark on how nevertheless the case of d=2 CFT is the best understood case

    Nevertheless ???? The infinite-dimensional conformal group is generally recognized as a lucky constraint which has enabled in 1984 to make a breakthrough in 2d case of the Polyakov’s 1971 bootstrap program which has been originally formulated in all dimensions. More symmetries easier problem in mathematical physics.

    This blunder should be corrected in the entry, in my opinion.

    • CommentRowNumber15.
    • CommentAuthorUrs
    • CommentTimeMay 19th 2010

    Well, I added the “nevertheless” after somebody had changed the entry to saying that the 2-d case is the least understood one, because the conformal group in 2d is so much richer. That made me think that one should point out that even though the structure is rich, it has been fully understood.

    But feel free to reword it as you deem appropriate.

    • CommentRowNumber16.
    • CommentAuthorzskoda
    • CommentTimeMay 19th 2010

    A manifest symmetry is never a factor which complicates a structure. It is just a statement of a manifest better order in a structure – knowing a symmetry makes it easier to analyse the structure.

    • CommentRowNumber17.
    • CommentAuthorzskoda
    • CommentTimeMay 19th 2010

    You also wrote:

    due to the general problems with rigorously handling higher dimensional QFTs

    The fact is that the bootstrap program in any number of dimension does not care about the definition of Feynman integral or renormalization or anything of the sort. It is not computing the amplitudes; it just looks at consistent systems of correlation functions which satisfy all the constraints. It is a classification program out of knowing the symmetries and axioms, not a computational program from a path integral and an action. So by definition it is irrelevant for this program weather people know how to regularize an integral in some number of dimensions.

    • CommentRowNumber18.
    • CommentAuthorUrs
    • CommentTimeMay 19th 2010
    • (edited May 19th 2010)

    Bootstrap or not, very few QFTs in higher dimensions are rigorously understood.

    2d CFT has to a large extent been constructed and classified. This is far from true in higher dimensions. Independend of which formalism you use.

    • CommentRowNumber19.
    • CommentAuthorzskoda
    • CommentTimeMay 19th 2010
    • (edited May 19th 2010)

    It is easy to be an admiral after the battle. If you think you can do the renormalization in 2d etc. hence that the difficulties with rigour prevent you to extend than go on. Most of the breakthrough is due to BPZ revolution in 1984 which had nothing to do with rigour in 2d as opposed to “rigour in handling higher dimensional QFT”, but with combinatorial handling of constraints performed in dimension 2 due infinite Virasoro symmetry at physicists’ level of rigour.

    Still one can not systematically do the Feynman integral and renormalization etc. in 2d. One avoids this by doing bootstrap or something else, instead of defining the analytic Feynman integral one replaces it with comgbinatorial device defined ad hoc with help of highly symmetric situation. Similarly one can do something for TQFTs in higher dimension here and there. But no progress in true general QFT.

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeMay 19th 2010

    Zoran,

    maybe there is a misunderstanding here. I am not talking about Feynman integrals etc. I am just saying that 2d CFT is better understood than higher dimensional CFT. I don’t think this is controversial. In fact, I think you make the same point.

    • CommentRowNumber21.
    • CommentAuthorTim_van_Beek
    • CommentTimeMay 19th 2010

    Statements like “more interesting in 2 dim than” or “better understood in 2 dim” or “conformal symmetries are more complicated in 2 dim” etc. have a tendency to be subjective.

    The foreword of the Francesco/Mathieu/Sénéchal book does a good job, in my opinion, to dodge this difficulty:

    “In d spatial dimensions, there are 1/2(d+1)(d+2) parameters needed to specify a conformal transformation. The consequence of this finiteness is that conformal invariance can say relatively little about the form of correlations, in fact just slightly more than rotation or scale invariance. The exception is in two dimensions, where the above formula gives only the number of parameters specifying conformal transformations that are everywhere well-defined, while there is an infinity variety of local transformations, namely the locally analytic functions. In two dimensions the conformal symmetry is so powerful as to allow…”

    (the authors write next “an exact solution of the problem”, which is suboptimal for various reasons, one being that the “problem” isn’t defined yet :-)

    • CommentRowNumber22.
    • CommentAuthorzskoda
    • CommentTimeMay 19th 2010
    • (edited May 19th 2010)

    I am just saying that 2d CFT is better understood than higher dimensional CFT.

    Well this is what I agree, however the original statement explictly claimed that the problem/difference is in the problems with rigour of defining QFT. In 2d the rigour has been avoided by alternative combinatorial treatment (which is often non-rigourous) of the classification problem of a consistent class (rather than the definition itself), but it works, at least in rational case.

    • CommentRowNumber23.
    • CommentAuthorzskoda
    • CommentTimeMay 19th 2010
    • (edited May 19th 2010)

    Right Tim, this is the canonical kind of statement I learned from (first from Ginsparg’s review when first studying the subject in early 1990s and then from that book when it appeared in 1997 to my delight). And it makes “nevertheless” out of place here.

    • CommentRowNumber24.
    • CommentAuthorzskoda
    • CommentTimeJun 2nd 2010

    Today's arxiv reference form Igor Kříž and collaborators at vertex operator algebra. Probably Urs will hear more from Prof. Kříž at Oberwolfach next week (I was scheduled to go and to my regret do not have physical strength to travel that far without health risk).

    • CommentRowNumber25.
    • CommentAuthorTim_van_Beek
    • CommentTimeJun 2nd 2010
    • (edited Jun 2nd 2010)

    So they will be at the workshop “Geometry, Quantum Fields, and Strings: Categorial Aspects” next week in Oberwolfach?

    The workshop reports are not freely available, are they?

    (I hope you get well soon).

    • CommentRowNumber26.
    • CommentAuthorUrs
    • CommentTimeJun 2nd 2010

    The workshop reports are not freely available, are they?

    The Oberwolfach workshops reports are usually made freely available online, as far as I am aware.

    • CommentRowNumber27.
    • CommentAuthorUrs
    • CommentTimeAug 23rd 2011

    I noticed that the references on the FQFT-perspective on 2dCFT were missing at at conformal field theory. So I added in some, in a new subsection References–Formulation by functors on conformal cobordisms.

    • CommentRowNumber28.
    • CommentAuthorzskoda
    • CommentTimeAug 23rd 2011

    Just go to the web page of Oberwolfach http://www.mfo.de and you can find pdfs of the last few years of online reports.

    • CommentRowNumber29.
    • CommentAuthorUrs
    • CommentTimeAug 23rd 2011

    Hey Zoran: it looks like in #28 you are replying to #25. Notice that this dates from over a year back! If you want Tim to see you message, you’d better email him. :-)

    • CommentRowNumber30.
    • CommentAuthorDavid_Corfield
    • CommentTimeDec 31st 2017

    I added

    • Clay Cordova, Thomas T. Dumitrescu, Kenneth Intriligator, Deformations of Superconformal Theories, (arXiv:1602.01217)

    to SCFT. Jacques Distler mentioned it as a source for the claim

    a general feature of ((1,0) or (2,0)) SCFTs in 6 dimensions (and 𝒩=3\mathcal{N}=3 SCFTs in 4 dimensions): they have no relevant or marginal supersymmetry-preserving deformations.

    • CommentRowNumber31.
    • CommentAuthorUrs
    • CommentTimeOct 20th 2018

    added pointer to

    • James E. Tener, Representation theory in chiral conformal field theory: from fields to observables (arXiv:1810.08168)

    (here and in related entries)

    diff, v61, current

    • CommentRowNumber32.
    • CommentAuthorUrs
    • CommentTimeNov 14th 2020

    added pointer to the original:

    diff, v66, current

    • CommentRowNumber33.
    • CommentAuthorUrs
    • CommentTimeNov 14th 2020

    added pointer to:

    diff, v66, current

    • CommentRowNumber34.
    • CommentAuthorUrs
    • CommentTimeOct 29th 2021

    added pointer to today’s

    • Joaquin Liniado, Two Dimensional Conformal Field Theory and a Primer to Chiral Algebras (arXiv:2110.15164)

    diff, v68, current

    • CommentRowNumber35.
    • CommentAuthorUrs
    • CommentTimeNov 4th 2021

    added pointer to today’s

    diff, v69, current

    • CommentRowNumber36.
    • CommentAuthorUrs
    • CommentTimeDec 25th 2021
    • CommentRowNumber37.
    • CommentAuthorUrs
    • CommentTimeDec 25th 2021

    added publication data for:

    diff, v71, current

    • CommentRowNumber38.
    • CommentAuthorUrs
    • CommentTimeAug 9th 2022

    added pointer to today’s

    • Marc Gillioz, Conformal field theory for particle physicists [arXiv:2207.09474]

    diff, v76, current

    • CommentRowNumber39.
    • CommentAuthorUrs
    • CommentTimeAug 11th 2022

    added pointer to today’s

    • Satoshi Nawata, Runkai Tao, Daisuke Yokoyama, Fudan lectures on 2d conformal field theory [arXiv2208.05180]

    diff, v77, current

    • CommentRowNumber40.
    • CommentAuthorUrs
    • CommentTimeMay 5th 2023

    added pointer to today’s

    will be adding this also to some related entries (such as VOA, conformal block, …)

    diff, v84, current

    • CommentRowNumber41.
    • CommentAuthorUrs
    • CommentTimeSep 20th 2023

    added pointer to today’s

    • Andrew M. Evans, Alexandra Miller, Aaron Russell, A Conformal Field Theory Primer in D3D \geq 3 [arXiv:2309.10107]

    diff, v86, current

    • CommentRowNumber42.
    • CommentAuthorjin
    • CommentTimeJul 20th 2024

    Add a link to the construction of the inverse functor of the equivalence CxCop -> Z(C).

    diff, v89, current

    • CommentRowNumber43.
    • CommentAuthorjin
    • CommentTimeJul 20th 2024

    Fix reference for the previous edit.

    diff, v89, current