Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeMay 31st 2022
    • (edited May 31st 2022)

    have adjusted the section-outline

    am hereby moving the following ancient query-box discussion from the entry to here:


    +– {: .query} Mike Shulman: Is that really the right definition? I think of “strictly increasing” as meaning that x<yx \lt y implies f(x)<f(y)f(x) \lt f(y), which is equivalent to the above for linear orders but weaker for partial orders. But I don’t have much experience with strictly increasing functions between non-linear orders, so maybe that is the right definition for partial orders.

    However, I don’t think it is the right definition for preorders; among other things, it’s not invariant under equivalence of categories. It seems to me that what you really want to say is that it is pseudomonic as a functor (whereas my weaker definition would become the statement that it is conservative as a functor.)

    Toby: This is the definition in HAF (Section 3.17), which defines it for posets (and is a smart enough book that it wouldn't blindly extend a definition from a special case). Although I don't have a reference, I'm pretty sure that this also used in analysis and topology when thinking about convergence and nets, where they may be prosets. However, I think that you have a good point about preordered sets, so I've changed the wording above. (I'll also try to confirm how covergence theorists define ’strictly increasing’ functions between directed prosets.)

    It occurs to me that, in the absence of the axiom of choice, one ought to accept even anafunctors between prosets as morphisms, even though these may not be representable as strict functions at all. I'll save that for another day, however.

    Mike Shulman: Of course, the definition you gave above isn’t the same as pseudomonic unless TT is a partial order; in general you want to say xyx\leq y whenever f(x)f(y)f(x) \cong f(y). The version with == is still not invariant under equivalence of TT.

    I don’t know a whole lot about convergence and nets, but I don’t remember seeing strictly increasing functions used there; I look forward to seeing what you find. Does HAF use the poset version for any application that makes clear why this is a good definition? Of course, monomorphisms of posets may quite naturally something to be interested in, but the question is why they should be called “strictly increasing.” =–


    diff, v15, current

    • CommentRowNumber2.
    • CommentAuthorUrs
    • CommentTimeMay 31st 2022
    • (edited May 31st 2022)

    have adjusted the wording in the Idea-section

    have put a Remark-environment around this remark:


    Sometimes the term ’monotone’ or ’isotone’ (but rarely both) is used for functions from SS to itself such that

    xf(x) x \leq f(x)

    for all xx in SS.


    am hereby removing the following box comment that went with this:

    +– {: .query} Is there a widely accepted term for this? I've seen both of these, I think, but the other meaning seems to be more common for both. —Toby =–

    For what it’s worth, I have not seen either of these uses and I doubt that it’s helpful. I vote for removing the above remark altogether, or else add a compelling reference that uses terminology in this way.

    diff, v15, current