Not signed in (Sign In)

Not signed in

Want to take part in these discussions? Sign in if you have an account, or apply for one below

  • Sign in using OpenID

Site Tag Cloud

2-category 2-category-theory abelian-categories adjoint algebra algebraic algebraic-geometry algebraic-topology analysis analytic-geometry arithmetic arithmetic-geometry book bundles calculus categorical categories category category-theory chern-weil-theory cohesion cohesive-homotopy-type-theory cohomology colimits combinatorics complex complex-geometry computable-mathematics computer-science constructive cosmology deformation-theory descent diagrams differential differential-cohomology differential-equations differential-geometry digraphs duality elliptic-cohomology enriched fibration foundation foundations functional-analysis functor gauge-theory gebra geometric-quantization geometry graph graphs gravity grothendieck group group-theory harmonic-analysis higher higher-algebra higher-category-theory higher-differential-geometry higher-geometry higher-lie-theory higher-topos-theory homological homological-algebra homotopy homotopy-theory homotopy-type-theory index-theory integration integration-theory internal-categories k-theory lie-theory limits linear linear-algebra locale localization logic mathematics measure measure-theory modal modal-logic model model-category-theory monad monads monoidal monoidal-category-theory morphism motives motivic-cohomology nlab noncommutative noncommutative-geometry number-theory of operads operator operator-algebra order-theory pages pasting philosophy physics pro-object probability probability-theory quantization quantum quantum-field quantum-field-theory quantum-mechanics quantum-physics quantum-theory question representation representation-theory riemannian-geometry scheme schemes set set-theory sheaf simplicial space spin-geometry stable-homotopy-theory stack string string-theory superalgebra supergeometry svg symplectic-geometry synthetic-differential-geometry terminology theory topology topos topos-theory tqft type type-theory universal variational-calculus

Vanilla 1.1.10 is a product of Lussumo. More Information: Documentation, Community Support.

Welcome to nForum
If you want to take part in these discussions either sign in now (if you have an account), apply for one now (if you don't).
    • CommentRowNumber1.
    • CommentAuthorUrs
    • CommentTimeJun 15th 2010
    • (edited Jun 15th 2010)

    created Cahiers topos.

    Do I understand correctly that this gadget is named after the journal that Dubuc’s original article appeared in? What a strange idea.

    • CommentRowNumber2.
    • CommentAuthorzskoda
    • CommentTimeJun 15th 2010
    • (edited Jun 15th 2010)

    I like it: people who read Cahiers often (like Igor) often refer to notion from there by saying cahiers version etc (I have not heard for this one so far though in these words).

    • CommentRowNumber3.
    • CommentAuthorUrs
    • CommentTimeJun 15th 2010

    Hm, I don’t know. I would like to use this term now for the oo-version, such as to increase the chance that people know what I am talking about. Should I call it the “(oo,1)-Cahiers topos”??

    • CommentRowNumber4.
    • CommentAuthorUrs
    • CommentTimeJun 15th 2010

    By the way: a while ago I said that I have a proposal for formalizing when one topos or (oo,1)-topos qualifies as an infinitesimal thickening of another. I said this is the case if the geometric morphism is induced from a morphism of sites that is a coreflective embedding.

    Now, for whatever it’s worth, Kock’s notion that he calls “semidirect products of category” GWG \ltimes W (section 4) is such that the canonical inclusion GGWG \to G \ltimes W is always coreflective, and indeed for him WW is the infinitesimal thickening.

    Not that this is very deep. But maybe it is good.

    • CommentRowNumber5.
    • CommentAuthorzskoda
    • CommentTimeJun 15th 2010

    This coreflectiveness is exactly what i was pointing in Rosenberg’s work in the parallel discussion, unless I misunderstood the setting. I do not see why you care about bimodules etc. and not the general nonsense part at the beginning.

    • CommentRowNumber6.
    • CommentAuthorUrs
    • CommentTimeJun 15th 2010
    • (edited Jun 15th 2010)

    Okay, so I missed it. On which page do they talk about coreflexivity?

    • CommentRowNumber7.
    • CommentAuthorzskoda
    • CommentTimeJun 15th 2010
    • (edited Jun 15th 2010)

    Well, I wrote in the answer there to you that the notion of subscheme (viewed as a category of sheaves) includes the coreflexivity, and that they define a thickenning as the smallest subscheme containing certain things. So it is burried in the sequence of the definitions which resemble the classical setup but written not in terms of rings and spectra but of categroies of qcoh sheaves.

    • CommentRowNumber8.
    • CommentAuthorTodd_Trimble
    • CommentTimeJun 15th 2010

    Is the Cahier topos the same model for SDG that Dubuc got upset about at the categories list, that it wasn’t named after him? If so, why isn’t it called the Dubuc topos?

    • CommentRowNumber9.
    • CommentAuthorzskoda
    • CommentTimeJun 15th 2010

    The parallel discussion we allued to is the nForum entry infinitesimally thickened topos. Urs now created nForum discussion on the entry differential bimodule which I started a while ago but never finished.

    • CommentRowNumber10.
    • CommentAuthorUrs
    • CommentTimeJun 15th 2010
    • (edited Jun 15th 2010)

    Is the Cahier topos the same model for SDG that Dubuc got upset about at the categories list, that it wasn’t named after him? If so, why isn’t it called the Dubuc topos?

    So the sites for the toposes in question are not equal, but I’d need to concentrate to determine to which extent the toposes are equivalent.

    My impression was that in that message Dubuc was remarking that he also invented the toposes that play the main role iin Moerdijk-Reyes’ book (sheaves on finitely generated C C^\infty-rings), whereas the “Cahiers topos” is about sheaves on infintesimally thickened ordinary things, so about certain very well behaved locally presentable C C^\infty-rings

    I have to say, though, I have not made much progress through the end of the old Sur les modeles. Yet.

    • CommentRowNumber11.
    • CommentAuthorUrs
    • CommentTimeJun 15th 2010

    What confuses me a bit is that Dubuc in his Sur les models at the end, culminating in theorem 4.10, considers the topos of sheaves on spaces of the form “variété ×\times infinitesimal” instead of “CartesianSpace ×\times infinitesimal” as everybody who cites this says.

    On page 3 Dubuc mentions variété différentielle for the first time, and seems to take their defnition for granted. I hope he means affine C C^\infty-variety, then I understand what’s going on. Otherwise there must be fine-print that I am missing,

    • CommentRowNumber12.
    • CommentAuthorDavidRoberts
    • CommentTimeJun 16th 2010
    • (edited Jun 16th 2010)

    I hope he means affine C ∞-variety,

    I think you’re pretty safe in assuming that. I vaguely recall (and francophones please help me out) that variété is not quite the same as variety in the modern sense. In the older literature (like Poincare) I think this term was meant to describe what we would now call (closed) submanifolds of n\mathbb{R}^n, i.e. affinely embedded.

    • CommentRowNumber13.
    • CommentAuthorUrs
    • CommentTimeJun 16th 2010
    • (edited Jun 16th 2010)

    Thanks, David, that must be it.

    • CommentRowNumber14.
    • CommentAuthorzskoda
    • CommentTimeJun 16th 2010
    • (edited Jun 16th 2010)

    Variété in French may mean a manifold or to mean a variety. Two things in English, one in French.

    Variété différentielle means a smooth manifold, not a smooth variety. A smooth variety would have other smooth word: lisse.

    • CommentRowNumber15.
    • CommentAuthorDavidRoberts
    • CommentTimeJun 17th 2010

    Thanks, Zoran. I was going to clarify a little regarding ’différentielle’ - it is obviously a smooth manifold in hindsight.

    • CommentRowNumber16.
    • CommentAuthorUrs
    • CommentTimeJun 17th 2010
    • (edited Jun 17th 2010)

    Okay, but then it all makes sense, too: because the Grothendieck topology on the site with objects of the form Manifold×InfinitesimalSpace Manifold \times InfinitesimalSpace that Dubuc talks about is that where covering families are of the form {U i×Wp i×IdU×W}\{ U_i \times \ell W \stackrel{p_i \times Id}{\to} U \times \ell W \} for {U ip iU}\{ U_i \stackrel{p_i }{\to} U \} an ordinary open cover of the maniold UU and for W\ell W an infinitesmal space.

    Since sheaves on the ordinary site of all manifolds are equivalent to sheaves on just Cartesian spaces, this means that also sheaves on the site {Manifold×Infinitesimal} \{ Manifold \times Infinitesimal \} that Dubuc considers is equivalent to sheaves on the site {VectorSpace×Infinitesimal}\{ VectorSpace \times Infinitesimal\} that A. Kock considers, which is in turn equivalent to sheaves on the site {CartesianSpace×Infinitesimal}\{ CartesianSpace\times Infinitesimal\} that Nishimura considers.

    So if Dubuc’s variété différentielle indeed means smooth manifold, then it is clear why all three of these sheaf categories are indeed the “Cahiers topos”.

    Okay, thanks. :-)

    • CommentRowNumber17.
    • CommentAuthorGuest
    • CommentTimeSep 1st 2011
    Hi, a little bit late, but I just run by chance into this page:

    "Is the Cahier topos the same model for SDG that Dubuc got upset about at the categories list, that it wasn't named after him? If so, why isn't it called the Dubuc topos?"

    Well, no. The cahiers topos was the first well adapted model of SDG (a concept that I introduced). I got upset about the topos G whose site of definition are the C^oo rings presented by a germ determined ideal (also a concept I introduced, and that it is the key concept in the theory of well adapted models). This topos is the definitive well adapted model, and actually I introduce it and proved all its basic important properties. I am fond of it. It is the analoge of the Zariski topos of algebraic geometry. Both topoi are defined by the topology of all open covers, which is an essential fact for their good properties. To think that the essential feature of the Zariski topos is that its covers are finite is not understanding what it is going on. Its essential feature is that its covers are all open covers. eduardo dubuc
    • CommentRowNumber18.
    • CommentAuthorDavidRoberts
    • CommentTimeSep 2nd 2011

    Welcome to the n-forum, Eduardo!

    • CommentRowNumber19.
    • CommentAuthorUrs
    • CommentTimeSep 2nd 2011

    There are plenty of things in the nnLab entries on SDG (see synthetic differential geometry - contents) that deserve to be included, expanded and clarified. This is certainly one of them. Maybe somebody finds the time to add some more. I should do something about it, but I am a bit absorbed with other things at the moment.

    • CommentRowNumber20.
    • CommentAuthorUrs
    • CommentTimeJan 4th 2012

    A while back somebody had kindly added to Cahiers topos a commented reference to the correction by Kock and Reyes of the article by Kock mentioned there. I have now worked that into the entry more comprehensively and further expanded here and there.

    (Notice: the definition in the entry has been the correct definition of Kock-Reyes all along.)

    • CommentRowNumber21.
    • CommentAuthorUrs
    • CommentTimeApr 15th 2013
    • (edited Apr 15th 2013)

    I have added to Cahiers topos a new section Synthetic tangent spaces. So far this just states a basic fact about what the synthetic tangent bundle of a smooth space is, as seen in its canonical reduced embedding into the Cahiers topos.

    • CommentRowNumber22.
    • CommentAuthorColin Tan
    • CommentTimeJul 17th 2014
    • (edited Jul 17th 2014)

    An object X of the Cahiers topos can be regarded as a smooth prespace whose set of ways of laying out n{\mathbb{R}}^n in XX is taken as the set of morphisms in the Cahiers topos from (the object of the Cahier topos represented by) n{\mathbb{R}}^n to XX.

    For 𝒞{\mathcal{C}} a differentially good cover of a carteisan space n{\mathbb{R}}^n, recall the notion of GluedPlots(𝒞,X){\mathrm{GluedPlots}}({\mathcal{C}},X), which in any case is a set. Is the canonical set function from X( n)X({\mathbb{R}}^n) to GluedPlots(𝒞,X){\mathrm{GluedPlots}}({\mathcal{C}},X) given by sending a plot pp of n{\mathbb{R}}^n to its restriction to all members of the cover 𝒞{\mathcal{C}} an epimorphism?

    • CommentRowNumber23.
    • CommentAuthorUrs
    • CommentTimeJul 17th 2014

    The objects in the topos are by definition the sheaves, and the sheaf condition says that the map which you are asking about is an isomorphism, hence in particular an epimorphism.

    • CommentRowNumber24.
    • CommentAuthorColin Tan
    • CommentTimeJul 17th 2014
    • (edited Jul 17th 2014)

    In definition 2 of covering families of the Cahiers topos, it is required that each element of a cover has the form p i×Id:U i×WU×Wp_i\times Id : U_i\times \ell W \to U\times \ell W. What I’m wondering is if we look at covers whose elements have source U iU_i a cartesian space instead of U×WU\times\ell W, the product of a cartesian space by an infinitesimally thickened point. In this case, do we still get an isomorphism?

    • CommentRowNumber25.
    • CommentAuthorUrs
    • CommentTimeJul 17th 2014
    • (edited Jul 17th 2014)

    A sheaf on whatever site is defined to be a presheaf such that for any space and any cover of that, the map that restricts sections over the space to matching sections over the cover is an isomorphism.

    Above you start your question by mentioning “smooth spaces” in the sense of sheaves over the site of just Cartesian spaces, and then later you turn to the site of the Cahier topos, whose objects are infinitesimally thinckened Cartesian spaces. If you look at a sheaf on the latter site, then by definition of sheaf all these restriction maps are isomorphisms.

    But from this it also follows that probably it is not clear to me what you are really after. Could you maybe say again in one go what the context is you start with and what in there the question is? sorry.

    • CommentRowNumber26.
    • CommentAuthorColin Tan
    • CommentTimeJul 17th 2014

    Here I’m really drawing the analogy with simplicial sets, of which being Kan is a property, and of which being (the nerve) of an ordinary category is a further property. Explicitly, a simplicial set is a presheaf over the simplex category. A simiplicial set is Kan if each horn has a filler. A Kan simplicial set is an ordinary category if each horn has a unique filler.

    I try to formulate this in terms of good covers. What does Kan mean? By a cover of a presheaf XX, mean a family of plots from probes (representable presheaves) to XX. What does it mean by each horn has a filler? Fix a horn, say the unique inner horn Λ\Lambda of the 2-simplex Δ 2\Delta^2. Fix a cover 𝒞{\mathcal{C}} of Λ\Lambda, say by two 1-simplexes. Consider the canonical map from X(Δ 2)X(\Delta^2) to GluedPlots(𝒞,X){\mathrm{GluedPlots}}({\mathcal{C}},X). To say that XX is Kan, is to say that this map is epi. To say that XX is a category, is to say that this map is iso.

    It seems to me that the enlargements of smooth spaces to objects of the Cahiers topos (and to smooth prespaces) is analogous to the enlargement from (nerves of) ordinary categories to Kan simplicial sets (and to general simplicial sets.)

    The feature of Kan simplicial sets is a combinatorial (internal) definition of homotopy groups. Analogously, it would seem that the presheaves of whose canonical map I’m alluding to is epi would allow a geometric definition of homotopy groups in the 1-toposial setting. Is there already a geometric definition of homotopy groups of objects of the Cahiers topos?

    • CommentRowNumber27.
    • CommentAuthorColin Tan
    • CommentTimeJul 17th 2014

    Urs, here is a way to ask my question more explicitly. Consider the inclusions SmoothSpaceCahiersToposSmoothPreSpace{\mathrm{SmoothSpace}}\hookrightarrow {\mathrm{CahiersTopos}}\hookrightarrow {\mathrm{SmoothPreSpace}}. If my understanding each correct, then each of this inclusions is actually fully faithful. That is to say, a homomorphism of smooth spaces is just a homomorphism of the underlying smooth prespaces. And a morphism in the Cahiers topos is a homomorphism of the underlying smooth prespaces.

    Is there a property of smooth prespaces which makes them objects of the Cahiers topos? For example, a smooth prespace is a smooth space if and only if the canonical map X( n)X({\mathbb{R}}^n) to GluedPlots(𝒞,X){\mathrm{GluedPlots}}({\mathcal{C}},X) is iso, for any differntially good cover of n{\mathbb{R}}^n. It is true that an object of the Cahiers topos is a smooth prespace such that this canonical map is epi?

    • CommentRowNumber28.
    • CommentAuthorUrs
    • CommentTimeJul 17th 2014
    • (edited Jul 17th 2014)

    There is some misunderstanding. The way I read the terminology there is no faithful inclusion of the Cahier topos into pre-smooth spaces.

    Let’s spell this out, to get to the bottom of where we are talking past each other:

    write CartSpCartSp for the site of Cartesian spaces, and CartSp synthdiffCartSp_{synthdiff} for the site of formal Cartesian spaces. Then in the terminology that I have used elsewhere

    • a pre-smooth space is a pre-sheaf on CartSpCartSp;

    • a smooth space is a sheaf on CartSpCartSp;

    • an object in the Cahiers topos is a sheaf on CartSp synthdiffCartSp_{synthdiff}.

    • CommentRowNumber29.
    • CommentAuthorMike Shulman
    • CommentTimeNov 4th 2014

    Is there a good reason that ThCartSp redirects to CartSp, rather than to Cahiers topos where it is actually defined?

    • CommentRowNumber30.
    • CommentAuthorUrs
    • CommentTimeNov 4th 2014

    No good reason, I think. I’ll change it. Thanks.

    • CommentRowNumber31.
    • CommentAuthorUrs
    • CommentTimeNov 4th 2014

    I have split it off as a small entry in itself. Also renamed it to FormalCartSp, in line with FormalSmooth∞Grpd, because, I suppose, that fits traditional terminology better than speaking of “thickening”

    • CommentRowNumber32.
    • CommentAuthorMike Shulman
    • CommentTimeNov 4th 2014

    Thanks. Maybe “formal” is traditional, but I heartily dislike it; there’s nothing in the English word “formal” that to me suggests an infinitesimal thickening.

    • CommentRowNumber33.
    • CommentAuthorMike Shulman
    • CommentTimeNov 4th 2014

    Based on the words, I would expect a “formal cartesian space” to be some sort of an abstraction of the ordinary notion of cartesian space.

    • CommentRowNumber34.
    • CommentAuthorUrs
    • CommentTimeNov 4th 2014

    That’s the common problem with “formal”, true. “formal space” means two completely different things to two different communities. Unfortunately.

    In general, the word “formal” in the sense of infinitesimal geometry is a really unwise choice of terminology. But its absolutely standard and widely understood in the respective circles.

    • CommentRowNumber35.
    • CommentAuthorUrs
    • CommentTimeApr 29th 2015

    added pointer to

    both to manifold with boundary as well as to Cahiers topos

    • CommentRowNumber36.
    • CommentAuthorzskoda
    • CommentTimeMay 5th 2015
    • (edited May 5th 2015)

    34 I do not think that it is “completely different”. Formal is about formal completions, formal power series. They are formal: one can not evaluate the formal sums as functions, they do not converge pointwise, they are often described syntactically as “formal sums of words in symbols” (commutative or not, depending which kind of formal power series we discuss) without evaluation semantics; their grammar is pretty free (in comparison to the grammar of converging series, or functions…). The fact that some formal completion dualize to certain infinitesimal neighborhoods, does not mean that anybody by formal means a synonym for infinitesimal. There are many kinds of infinitesimality, only some are modelled by duals of formal objects.

    • CommentRowNumber37.
    • CommentAuthorSam Staton
    • CommentTimeMar 12th 2018

    I think i *i_* is a right adjoint, so corrected the page at Cahiers+topos#RelationToSyntheticTangentSpaces. Hope my correction is not incorrect!

    • CommentRowNumber38.
    • CommentAuthorDavid_Corfield
    • CommentTimeMar 13th 2018
    • (edited Mar 13th 2018)

    So then the diagram above your change should have arrows the other way, as we normally have left adjoints on top.

    Later on the page, in the proof of Prop 3.9, it speaks of

    By general properties of left adjoints of functors of presheaves, i *Xi_{\ast} X

    Is this relying on there being a further right adjoint, i !i^{!}?

    • CommentRowNumber39.
    • CommentAuthorSam Staton
    • CommentTimeMar 13th 2018
    • (edited Mar 13th 2018)

    Thanks. I should have read the rest of the section. It looks like i *i_\ast was supposed to be i !i_!, the left adjoint of i *i_\ast, throughout that section, according to the usual notation. So I have fixed it (reverted my first edit, and then replaced i *i_\ast with i !i_! throughout). Hopefully this is correct…